DOI QR코드

DOI QR Code

산 촉매가 물유리 기반 실리카 에어로겔의 기공구조에 미치는 영향

Effect of Acid Catalyst Kinds on the Pore Structural Characteristics of Water Glass based Silica Aerogel

  • Nah, Ha-Yoon (Department of Materials Science and Engineering, Yonsei University) ;
  • Jung, Hae-Noo-Ree (Department of Materials Science and Engineering, Yonsei University) ;
  • Lee, Kyu-Yeon (Department of Materials Science and Engineering, Yonsei University) ;
  • Ku, Yang Seo (GLChem Co., ltd.) ;
  • Park, Hyung-Ho (Department of Materials Science and Engineering, Yonsei University)
  • 투고 : 2017.03.07
  • 심사 : 2017.06.15
  • 발행 : 2017.09.30

초록

물유리는 기존의 silicon alkoxide보다 훨씬 단가가 저렴하여 상업화에 유리하다는 장점을 나타낸다. 물유리 기반 실리카 에어로겔의 제조에서 산 촉매에 의한 중합 과정이 최종 미세 기공구조 특성에 상당한 영향을 끼치는데, 본 연구에서는 이러한 산 촉매의 종류와 양에 대한 물유리 기반 실리카 에어로겔의 비표면적, 기공 크기 분포 등 각 경우에 해당하는 물성 및 그에 따른 차이를 연구하였다. 최종 생성물의 물성을 통해 물유리 기반 실리카 에어로겔은 중합 반응에 관여하는 산 촉매의 종류와 농도, 몰수에 의해 영향을 받고, 특히 산 촉매의 몰수에 의한 영향이 몰 농도에 의한 영향보다 크게 작용함을 확인하였다. 기존 방식으로 4M 염산 촉매를 첨가할 경우 비표면적이 $394m^2/g$, 기공의 부피가 2.20 cc/g, 평균 기공 지름이 22.3 nm이며 기공률이 92.53%인 실리카 에어로겔을 합성할 수 있었다. 반면 4M의 황산 촉매를 적정량의 몰수인 73 mmol로 투입하여 최종 물유리 기반 실리카 에어로겔을 제조할 경우 비표면적은 $516m^2/g$, 기공의 부피는 3.10 cc/g, 평균 기공 지름은 24.1 nm, 기공률은 96.1%로, 기존의 산 촉매를 투입하여 만든 물유리 기반 실리카 에어로겔보다 전반적으로 기공구조의 특성이 향상됨을 확인하였다.

Water glass is much cheaper than silicon alkoxide, so it has advantage for commercialization. A condensation by acid catalyst makes considerable effect about the properties of water glass based silica aerogel among many factors in silica aerogel process. The pore structural properties of water glass based silica aerogel such as specific surface area and pore size distribution have been investigated through the changes in the amount and the kinds of acid catalyst. It has been confirmed that water glass based silica aerogel is affected by various conditions of catalyst in the condensation reaction such as the kind, concentration, and the amount of mole of acid catalyst on the properties of final products. Especially, it is checked that the effect of mole of acid is more prominent than that of concentration. In the case for conventional method with introducing 4M HCl in condensation step, the silica aerogel could be synthesized which has $394m^2/g$ of specific surface area, 2.20 cc/g of pore volume, 22.3 nm of average pore size, and 92.53% of porosity. On the other hand, when 4M sulfuric acid was used with 73 mmol at the condensation step of water glass based silica aerogel, the pore structural characteristics of water based silica aerogel showed better properties than the case of using HCl, for example, specific surface area was measured as $516m^2/g$, and pore volume, average pore diameter, and porosity were obtained as 3.10 cc/g, 24.1 nm, and 96.1%, respectively.

키워드

참고문헌

  1. A. S. Dorcheh, and M. H. Abbasi, "Silica aerogel; synthesis, properties and characterization", Journal of Materials Processing Technology, 199(1), 10 (2008). https://doi.org/10.1016/j.jmatprotec.2007.10.060
  2. M. Schmidt, and F. Schwertfeger, "Applications for silica aerogel products", Journal of Non-Crystalline Solids, 225, 364 (1998). https://doi.org/10.1016/S0022-3093(98)00054-4
  3. J. Fricke, and T. Tillotson, "Aerogels: production, characterization, and applications", Thin solid Films, 297(1), 212 (1997).
  4. M. A. Aegerter, N. Leventis, and M. Koebel, "Aerogels Handbook", 104, Springer, New York (2011).
  5. J. L. Gurav, A. V. Rao, A. P. Rao, D. Y. Nadargi, and S. D. Bhagat, "Physical properties of sodium silicate based aerogels prepared by single step sol-gel process dried at ambient pressure", Journal of Alloys and Compounds, 476(1-2), 397 (2009). https://doi.org/10.1016/j.jallcom.2008.09.029
  6. P. M. Shewale, A. V. Rao, and A. P. Rao, "Effect of different trimethyl silylating agents on the hydrophobic and physical properties of silica aerogels", Applied Surface Science, 254(21), 6902 (2008). https://doi.org/10.1016/j.apsusc.2008.04.109
  7. Z. Shao, F. Luo, X. Cheng, and Y. Zhang, "Superhydrophic sodium silicate based silica aerogel prepared by ambient pressure drying", Materials Chemistry and Physics, 141(1), 570 (2013). https://doi.org/10.1016/j.matchemphys.2013.05.064
  8. A. J. Hunt, "Light scattering for aerogel characterization", Journal of Non-Crystalline Solids, 225, 303 (1998). https://doi.org/10.1016/S0022-3093(98)00048-9
  9. A. V. Rao, A. P. Rao, and M. M. Kulkarni, "Influence of gel aging and $Na_2SiO_3/H_2O$ molar ratio on Non-Crystalline Solids, 350, 224 (2004). https://doi.org/10.1016/j.jnoncrysol.2004.07.083
  10. H. Omranpour, and S. Motahari, "Effect of processing conditions on silica aerogel during aging: Role of solvent, time and temperature", Journal of Non-Crystalline Solids, 379(1), 7 (2013). https://doi.org/10.1016/j.jnoncrysol.2013.07.025
  11. D. J. Suh, T. J. Park, J. H. Sonn, and J. C. Lim, "Effect of aging on the porous texture of silica aerogels prepared by $NH_4OH$ and NH4F catalyzed sol-gel process", Journal of Materials Science Letters, 18, 1473 (1999). https://doi.org/10.1023/A:1006625913694
  12. B. Karakuzu, T. M. Temel, S. Yucel, P. Terzioglu, and Y. Elamis, "Effect of acid type and gelation pH on the structural properties of silica aerogels prepared by use of rice hull biosilica", Sigma Journal of Engineering and Natural Sciences, 34(2), 175 (2016).
  13. M. A. Eiarsrud, E. Nilsen, A. Rigacci, G. M. Pajonk, S. Buathier, D. Valette, M. Durant, B. Chevalier, P. Nitz, and F. Ehrburger-Dolle, "Strengthening of silica gels and aerogels by washing and aging processes", Journal of Non-Crystalline Solids, 285(1), 1 (2001). https://doi.org/10.1016/S0022-3093(01)00423-9
  14. U. K. Bangi, A. V. Rao, and A. P. Rao, "A new route for preparation of sodium-silicate-based hydrophobic silica aerogels via ambient pressure drying", Science and Technology of Advanced Materials, 9(3), 1 (2008).
  15. S. Smitha, P. Shajesh, P. R. Aravind, S. Rajesh Kumar, P. K. Pillai, and K. G. K. Warrier, "Effect of aging time and concentration of aging solution on the porosity characteristics of subcritically dried silica aerogels", Microporous and Mesoporous Materials, 91(1), 286 (2006). https://doi.org/10.1016/j.micromeso.2005.11.051
  16. P. B. Sarawade, J. K. Kim, A. Hilonga, and H. T. Kim, "Influence of aging conditions on textural properties of water-glassbased silica aerogels prepared at ambient pressure", Korean Journal of Chemical Engineering, 27(4), 1301 (2010). https://doi.org/10.1007/s11814-010-0173-z
  17. P. H. Tewari, A. J. Hunt, and K. D. Lofftus, "Ambient-temperature supercritical drying of transparent silica aerogels", Materials Letters, 3(9), 363 (1985). https://doi.org/10.1016/0167-577X(85)90077-1
  18. U. K. Bangi, I. K. Jung, C. S Park, S. Baek, and H. H. Park, "Optically transparent silica aerogels based on sodium silicate by a two step sol-gel process ambient pressure drying", Solid State Sciences, 18, 50 (2013). https://doi.org/10.1016/j.solidstatesciences.2012.12.016
  19. S. Haereid, J. Anderson, M. A. Einarsrud, D. W. Hua, and D. M. Smita, "Thermal and temperal aging of TMOS-based aerogel precursors in water", Journal of Non-Crystalline Solids, 185(3), 221 (1995). https://doi.org/10.1016/0022-3093(95)00016-X
  20. K. Y. Lee, H. N. R. Jung, D. B. Mahidik, and H. H. Park, "Characterization of Mechanical Property Change in Polymer Aerogels Depending on the Ligand Structure of Acrylate Monomer", J. Microelectron. Packag. Soc., 23(3), 15 (2016). https://doi.org/10.6117/kmeps.2016.23.3.015
  21. D. B. Mahadik, H. N. R. Jung, Y. K. Lee, K. Y. Lee, and H. H. Park, "Elastic and Superhydrophobic Monolithic Methyltrimethoxysilane- based Silica Aerogels by Two-step Sol-gel Process", J. Microelectron. Packag. Soc., 23(1), 35 (2016). https://doi.org/10.6117/kmeps.2016.23.1.035
  22. S. W. Hwang, T. Y. Kim, and S. H. Hyun, "Effect of surface modification conditions on the synthesis of mesoporous crack-free silica aerogel monoliths from waterglass via ambient- drying", Microporous and Mesoporous Materials, 130(1), 295 (2010). https://doi.org/10.1016/j.micromeso.2009.11.024
  23. P. He, X. D. Gao, X. M. Li, Z. W. Jiang, Z. H. Yang, C. L. Wang, and Z. Y, Gu, "Highly transparent silica aerogel thick films with hierarchical porosity from water glass via ambient pressure drying", Materials Chemistry and Physics, 147(1), 70 (2014).

피인용 문헌

  1. Comparisonal studies of surface modification reaction using various silylating agents for silica aerogel vol.96, pp.2, 2017, https://doi.org/10.1007/s10971-020-05399-5
  2. Porous한 물유리 기반 실리카 중공 미세구 형성에 대한 계면활성제 농도의 영향 vol.28, pp.4, 2021, https://doi.org/10.6117/kmeps.2021.28.4.079