DOI QR코드

DOI QR Code

물을 압력 매개체로 이용한 녹주석의 체적탄성률 연구

A Study of Bulk Modulus of Beryl Using Water as a Pressure-Transmitting Medium

  • 황길찬 (연세대학교 지구시스템과학과) ;
  • 김현호 (연세대학교 지구시스템과학과) ;
  • 이용재 (연세대학교 지구시스템과학과)
  • Hwang, Gil Chan (Department of Earth System Sciences, Yonsei University) ;
  • Kim, Hyunho (Department of Earth System Sciences, Yonsei University) ;
  • Lee, Yongjae (Department of Earth System Sciences, Yonsei University)
  • 투고 : 2017.06.27
  • 심사 : 2017.09.04
  • 발행 : 2017.09.30

초록

천연산 녹주석($Be_3Al_2Si_6O_{18}$, P6/mcc) 중 산출지가 각각 다른 아쿠아마린 시료인 녹주석-A, 녹주석-B를 물을 압력전달 매개체로 사용하여 고압실험 및 고온-고압실험을 실시하였다. 기존 문헌과 다르게 압력전달 매개체로 물을 이용했을 때 고압 및 고온-고압 상태에서 녹주석의 조성과 구조에 어떠한 영향을 주며 탄성 특성이 어떻게 변하는지를 확인하기 위함이다. 그 결과 녹주석-A, B의 체적탄성률은 각각 111(7) GPa, $K{_0}^{\prime}=73(7)$; 110(9) GPa, $K{_0}^{\prime}=65(8)$로 확인되었다. 이는 기존 연구에서 메탄올 에탄올 4 : 1 체적비로 혼합하여 관찰한 것과 다른 값 및 경향성을 보여주는 것으로 확인하였으며 관찰된 녹주석의 치밀화는 ICE VI, ICE VII 상변이 구간인 약 1.0 GPa, 약 2.5 GPa 구간과 일치하였다.

In-situ high-pressure and ex-situ high temperature-pressure experiments of natural beryl ($Be_3Al_2Si_6O_{18}$, P6/mcc) from two different localities (beryl-A and beryl-B) were studied using pure water as pressure transmitting medium. Compared to the previous study using a mixture of methanol:ethanol medium in 4 : 1 by volume, pressure- and temperature-induced chemical and structural changes under water medium are expected to be different. The derived bulk moduli are 111(7) GPa, $K{_0}^{\prime}=73(7)$; 110(9) GPa, $K{_0}^{\prime}=65(8)$ for beryl-A and beryl-B, respectively. We observe densifications in volume compression, which appear to be attributed to the phase transitions of water to ICE VI and ICE VII around 1.0 GPa and 2.5 GPa, respectively.

키워드

참고문헌

  1. Angel, R.J., Alvaro, M., and Gonzalez-Platas, J. (2014) EosFit7c and a Fortran module (library) for equation of state calculations. Zeitschrift fur Kristallographie-Crystalline Materials, 229, 405.
  2. Aurisicchio, C., Fioravanti, G., Grubessi, O., and Zanazzi, P.F. (1988) Reappraisal of the crystal chemistry of beryl. American Mineralogist, 73, 826-837.
  3. Birch, F. (1947) Finite elastic strain of cubic crystals. Physical Review, 71, 809-824. https://doi.org/10.1103/PhysRev.71.809
  4. Bragg, W.L. and West, J. (1926) The structure of beryl, $Be_3Al_2Si_6O_{18}$. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 111, 691-714.
  5. Fan, D., Xu, J., Kuang, Y., Li, X., Li, Y., and Xie, H. (2015) Compressibility and equation of state of beryl ($Be_3Al_2Si_6O_{18}$) by using a diamond anvil cell and in situ synchrotron X-ray diffraction. Physics and Chemistry of Minerals, 42, 529-539. https://doi.org/10.1007/s00269-015-0741-1
  6. Hammersley, A. (2004) FIT2D V12.012 Reference Manual. ESRF, 6.
  7. Hazen, R.M., Au, A.Y., and Finger, L.W. (1986) High-pressure crystal chemistry of beryl ($Be_3Al_2Si_6O_{18}$) and euclase ($BeAlSiO_4OH$). American Mineralogist, 71, 977-984.
  8. Horiba. (2017) User's manual, LabSpec 6 Spectroscopy Software Suite. Horiba Ltd.
  9. Kamb, B. (1965) Structure of Ice VI. Science, 150, 205-209. https://doi.org/10.1126/science.150.3693.205
  10. Kamb, B. and Davis, B.L. (1964) ICE VII, The densest form of ice. Proceedings of the National Academy of Sciences of the United States of America, 52, 1433-1439. https://doi.org/10.1073/pnas.52.6.1433
  11. Klein, C. and Dutrow, B. (2007) The 23rd edition of the manual of mineral science (after James D. Dana). John Wiley & Sons, 23, 98, 235, 558.
  12. Lee, G.W., Evans, W.J., and Yoo, C.-S. (2007) Dynamic pressure-induced dendritic and shock crystal growth of ice VI. Proceedings of the National Academy of Sciences, 104, 9178-9181. https://doi.org/10.1073/pnas.0609390104
  13. Mao, H.K., Xu, J., and Bell, P.M. (1986) Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. Journal of Geophysical Research: Solid Earth, 91, 4673-4676. https://doi.org/10.1029/JB091iB05p04673
  14. O’Bannon III, E. and Williams, Q. (2016) Beryl-II, a high-pressure phase of beryl: raman and luminescence spectroscopy to 16.4 GPa. Physics and Chemistry of Minerals, 43, 671-687. https://doi.org/10.1007/s00269-016-0837-2
  15. Prencipe, M. (2002) Ab initio Hartree-Fock study and charge density analysis of beryl ($Al_4Be_6Si_{12}O_{36}$). Physics and Chemistry of Minerals, 29, 552-561. https://doi.org/10.1007/s00269-002-0256-4
  16. Prencipe, M. and Nestola, F. (2005) Quantum-mechanical modeling of minerals at high pressures. The role of the Hamiltonian in a case study: the beryl ($Al_4Be_6Si_{12}O_{36}$). Physics and Chemistry of Minerals, 32, 471-479. https://doi.org/10.1007/s00269-005-0024-3
  17. Prencipe, M. and Nestola, F. (2007) Minerals at high pressure. Mechanics of compression from quantum mechanical calculations in a case study: the beryl ($Al_4Be_6Si_{12}O_{36}$). Physics and Chemistry of Minerals, 34, 37-52.
  18. Prencipe, M., Noel, Y., Civalleri, B., Roetti, C., and Dovesi, R. (2006) Quantum-mechanical calculation of the vibrational spectrum of beryl ($Al_4Be_6Si_{12}O_{36}$) at the ${\Gamma}$ point. Physics and Chemistry of Minerals, 33, 519-532. https://doi.org/10.1007/s00269-006-0110-1
  19. Prencipe, M., Scanavino, I., Nestola, F., Merlini, M., Civalleri, B., Bruno, M., and Dovesi, R. (2011) High-pressure thermo-elastic properties of beryl ($Al_4Be_6Si_{12}O_{36}$) from ab initio calculations, and observations about the source of thermal expansion. Physics and Chemistry of Minerals, 38, 223-239. https://doi.org/10.1007/s00269-010-0398-8
  20. Qin, S., Liu, J., Li, H.-J., Zhu, X.-P., and Li, X.-D. (2008) In-situ high-pressure x-ray diffraction of natural beryl. Chinese Journal of High Pressure Physics, 22, 1-5.
  21. Sardi, F.G. and Heimann, A. (2015) Pegmatitic beryl as indicator of melt evolution: example from the velasco district, Pampeana pegmatite province, argentina, and review of worldwide occurrences. The Canadian Mineralogist.
  22. Seoung, D., Lee, Y., and Lee, Y. (2012) In-situ phase transition study of minerals using micro-focusing rotating-anode X-ray and 2-dimensional area detector. Econ. Environ. Geol., 45, 79-88. https://doi.org/10.9719/EEG.2012.45.2.079
  23. Seto, Y., Nishio-Hamane, D., Nagai, T., and Sata, N. (2010) Development of a software suite on x-ray diffraction experiments. The Review of High Pressure Science and Technology, 20, 269-276. https://doi.org/10.4131/jshpreview.20.269
  24. Toby, B.H. (2001) EXPGUI, a graphical user interface for GSAS. Journal of Applied Crystallography, 34, 210-213. https://doi.org/10.1107/S0021889801002242
  25. Toby, B.H. (2005) CMPR-a powder diffraction toolkit. Journal of Applied Crystallography, 38, 1040-1041. https://doi.org/10.1107/S0021889805030232
  26. Wood, D.L. and Nassau, K. (1968) The characterization of beryl and emerald by visble and infrared absorption spectroscopy. American Mineralogist, 53, 777-800.
  27. Yoon, H.S. and Newnham, R.E. (1973) The elastic properties of beryl. Acta Crystallographica Section A, 29, 507-509. https://doi.org/10.1107/S0567739473001270