Browse > Article
http://dx.doi.org/10.9727/jmsk.2017.30.3.83

A Study of Bulk Modulus of Beryl Using Water as a Pressure-Transmitting Medium  

Hwang, Gil Chan (Department of Earth System Sciences, Yonsei University)
Kim, Hyunho (Department of Earth System Sciences, Yonsei University)
Lee, Yongjae (Department of Earth System Sciences, Yonsei University)
Publication Information
Journal of the Mineralogical Society of Korea / v.30, no.3, 2017 , pp. 83-91 More about this Journal
Abstract
In-situ high-pressure and ex-situ high temperature-pressure experiments of natural beryl ($Be_3Al_2Si_6O_{18}$, P6/mcc) from two different localities (beryl-A and beryl-B) were studied using pure water as pressure transmitting medium. Compared to the previous study using a mixture of methanol:ethanol medium in 4 : 1 by volume, pressure- and temperature-induced chemical and structural changes under water medium are expected to be different. The derived bulk moduli are 111(7) GPa, $K{_0}^{\prime}=73(7)$; 110(9) GPa, $K{_0}^{\prime}=65(8)$ for beryl-A and beryl-B, respectively. We observe densifications in volume compression, which appear to be attributed to the phase transitions of water to ICE VI and ICE VII around 1.0 GPa and 2.5 GPa, respectively.
Keywords
beryl; aquamarine; high pressure; diamond anvil cell; bulk modulus;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Angel, R.J., Alvaro, M., and Gonzalez-Platas, J. (2014) EosFit7c and a Fortran module (library) for equation of state calculations. Zeitschrift fur Kristallographie-Crystalline Materials, 229, 405.
2 Aurisicchio, C., Fioravanti, G., Grubessi, O., and Zanazzi, P.F. (1988) Reappraisal of the crystal chemistry of beryl. American Mineralogist, 73, 826-837.
3 Birch, F. (1947) Finite elastic strain of cubic crystals. Physical Review, 71, 809-824.   DOI
4 Bragg, W.L. and West, J. (1926) The structure of beryl, $Be_3Al_2Si_6O_{18}$. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 111, 691-714.
5 Fan, D., Xu, J., Kuang, Y., Li, X., Li, Y., and Xie, H. (2015) Compressibility and equation of state of beryl ($Be_3Al_2Si_6O_{18}$) by using a diamond anvil cell and in situ synchrotron X-ray diffraction. Physics and Chemistry of Minerals, 42, 529-539.   DOI
6 Hammersley, A. (2004) FIT2D V12.012 Reference Manual. ESRF, 6.
7 Hazen, R.M., Au, A.Y., and Finger, L.W. (1986) High-pressure crystal chemistry of beryl ($Be_3Al_2Si_6O_{18}$) and euclase ($BeAlSiO_4OH$). American Mineralogist, 71, 977-984.
8 Horiba. (2017) User's manual, LabSpec 6 Spectroscopy Software Suite. Horiba Ltd.
9 Kamb, B. (1965) Structure of Ice VI. Science, 150, 205-209.   DOI
10 Kamb, B. and Davis, B.L. (1964) ICE VII, The densest form of ice. Proceedings of the National Academy of Sciences of the United States of America, 52, 1433-1439.   DOI
11 Klein, C. and Dutrow, B. (2007) The 23rd edition of the manual of mineral science (after James D. Dana). John Wiley & Sons, 23, 98, 235, 558.
12 Lee, G.W., Evans, W.J., and Yoo, C.-S. (2007) Dynamic pressure-induced dendritic and shock crystal growth of ice VI. Proceedings of the National Academy of Sciences, 104, 9178-9181.   DOI
13 Mao, H.K., Xu, J., and Bell, P.M. (1986) Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. Journal of Geophysical Research: Solid Earth, 91, 4673-4676.   DOI
14 Prencipe, M. and Nestola, F. (2007) Minerals at high pressure. Mechanics of compression from quantum mechanical calculations in a case study: the beryl ($Al_4Be_6Si_{12}O_{36}$). Physics and Chemistry of Minerals, 34, 37-52.
15 O’Bannon III, E. and Williams, Q. (2016) Beryl-II, a high-pressure phase of beryl: raman and luminescence spectroscopy to 16.4 GPa. Physics and Chemistry of Minerals, 43, 671-687.   DOI
16 Prencipe, M. (2002) Ab initio Hartree-Fock study and charge density analysis of beryl ($Al_4Be_6Si_{12}O_{36}$). Physics and Chemistry of Minerals, 29, 552-561.   DOI
17 Prencipe, M. and Nestola, F. (2005) Quantum-mechanical modeling of minerals at high pressures. The role of the Hamiltonian in a case study: the beryl ($Al_4Be_6Si_{12}O_{36}$). Physics and Chemistry of Minerals, 32, 471-479.   DOI
18 Prencipe, M., Noel, Y., Civalleri, B., Roetti, C., and Dovesi, R. (2006) Quantum-mechanical calculation of the vibrational spectrum of beryl ($Al_4Be_6Si_{12}O_{36}$) at the ${\Gamma}$ point. Physics and Chemistry of Minerals, 33, 519-532.   DOI
19 Prencipe, M., Scanavino, I., Nestola, F., Merlini, M., Civalleri, B., Bruno, M., and Dovesi, R. (2011) High-pressure thermo-elastic properties of beryl ($Al_4Be_6Si_{12}O_{36}$) from ab initio calculations, and observations about the source of thermal expansion. Physics and Chemistry of Minerals, 38, 223-239.   DOI
20 Qin, S., Liu, J., Li, H.-J., Zhu, X.-P., and Li, X.-D. (2008) In-situ high-pressure x-ray diffraction of natural beryl. Chinese Journal of High Pressure Physics, 22, 1-5.
21 Sardi, F.G. and Heimann, A. (2015) Pegmatitic beryl as indicator of melt evolution: example from the velasco district, Pampeana pegmatite province, argentina, and review of worldwide occurrences. The Canadian Mineralogist.
22 Toby, B.H. (2005) CMPR-a powder diffraction toolkit. Journal of Applied Crystallography, 38, 1040-1041.   DOI
23 Seoung, D., Lee, Y., and Lee, Y. (2012) In-situ phase transition study of minerals using micro-focusing rotating-anode X-ray and 2-dimensional area detector. Econ. Environ. Geol., 45, 79-88.   DOI
24 Seto, Y., Nishio-Hamane, D., Nagai, T., and Sata, N. (2010) Development of a software suite on x-ray diffraction experiments. The Review of High Pressure Science and Technology, 20, 269-276.   DOI
25 Toby, B.H. (2001) EXPGUI, a graphical user interface for GSAS. Journal of Applied Crystallography, 34, 210-213.   DOI
26 Wood, D.L. and Nassau, K. (1968) The characterization of beryl and emerald by visble and infrared absorption spectroscopy. American Mineralogist, 53, 777-800.
27 Yoon, H.S. and Newnham, R.E. (1973) The elastic properties of beryl. Acta Crystallographica Section A, 29, 507-509.   DOI