DOI QR코드

DOI QR Code

Antioxidant Activity of Ogae Egg White Protein Hydrolysates using commercial Protease

단백질 분해효소를 이용한 오계란 가수분해물의 항산화 활성

  • Ha, Yoo Jin (Department of Food and Biotechnology, Joongbu University) ;
  • Ji, Joong Gu (Department of Oriental Health Care, Joongbu University) ;
  • Yoo, Sun Kyun (Department of Food and Biotechnology, Joongbu University)
  • 하유진 (중부대학교 식품생명과학과) ;
  • 지중구 (중부대학교 한방건강관리학과) ;
  • 유선균 (중부대학교 식품생명과학과)
  • Received : 2017.08.12
  • Accepted : 2017.09.04
  • Published : 2017.09.30

Abstract

Protein hydrolysates derived from plants and animals having antioxidant, suppression of hypertension, immunodulatory, alleviation of pain, and antimicrobial activity has been known as playing important role like hormone. This study was performed to hydrolysis of Ogae egg white protein using the six proteases. The antioxidant activity of the produced peptides was analyzed. As a result, the maximum value of hydrolysis was protamex(46.3%), DPPH radical scavenging was bromelain(57.23%), hydroxy radical scavenging was alcalase(30.21%), superoxide radical scavenging was alcalase(58.07%), and $Fe^{2+}$ chelation ability was alcalase(72.06%). Furthermore, the antioxidant Inhibition concentration ($IC_{50}$) of peptides was evaluated for each enzyme. As a result, the maximum value of alcalase was $Fe^{2+}$ cheating ability($IC_{50}$, 1.24 mg/mL), bromelain was DPPH radical scavenging($IC_{50}$, 2.46 mg/mL), flavourzyme was $Fe^{2+}$ cheating ability($IC_{50}$, 1.25 mg/mL), neutrase was DPPH radical scavenging($IC_{50}$, 3.64 mg/mL), papain was DPPH radical scavenging ($IC_{50}$, 3.82 mg/mL) and protamex was DPPH radical scavenging($IC_{50}$, 1.93 mg/mL). Therefore, we expect that peptides produced from Ogae egg white protein using protease enzyme are useful as an antioxidant functional food ingredients.

식물 및 동물성 단백질 유래 펩타이드 형태의 단백질 가수 분해물들은 항산화, 고혈압 완화, 면역조절, 진통완화 및 항균작용 등 생리활성이 있는 것으로 알려져 왔다. 본 연구는 6가지 프로티아제를 이용하여 오계란 단백질 가수분해물을 생산하고, 생산된 펩타이드의 항산화 능력을 평가하였다. 그 결과 가수분해도의 최대값은 protamex(46.3%)이고, DPPH 라디칼 소거능 최대값은 bromelain(57.23%), 하이드록시 라디칼 소거능 최대값은 alcalase(30.21%), 슈퍼옥사이드 라디칼 소거능 최대값은 alcalase(58.07%), $Fe^{2+}$ 킬레이션 능력 최대값은 alcalase(72.06%)로 나타났다. 더 나아가 효소별 항산화 저해 능력 $IC_{50}$ 평가하였다. 그 결과 alcalase에 의한 최대값은 금속 킬레이션 능력($IC_{50}$, 1.24 mg/mL)이고, bromelain에 의한 최대값은 DPPH 소거능($IC_{50}$, 2.46 mg/mL)이고, flavourzyme에 의한 최대값은 금속 킬레이션 능력($IC_{50}$, 1.25 mg/mL)이고, neutrase에 의한 최대값은 DPPH 소거능($IC_{50}$, 3.64 mg/mL)이고, papain에 의한 최대값은 DPPH 소거능($IC_{50}$, 3.82 mg/mL)이고, protamex에 의한 최대값은 DPPH 소거능($IC_{50}$, 1.93 mg/mL)이었다. 따라서 protease를 이용하여 오계란 단백질에서 추출한 펩타이드는 항산화 기능성 식품소재로서 활용할 가치가 높을 것으로 기대한다.

Keywords

References

  1. E.S. Harold, E. A. Darrell, I. F. Evan, A. M. John, "A review of the interaction among dietary antioxidants and reactive oxygen species", Journal of Nutritional Biochemistry, Vol. 18, pp. 567-79. (2007). https://doi.org/10.1016/j.jnutbio.2006.10.007
  2. D.S. Jung, "Player's training of physical strength and reactive oxygen", Vol. 86, pp. 32-39, (2003).
  3. Bernard, "Preliminary screening of some tropical plants for anti-tyrosinase activity", J Ethnopharm Vol. 82, pp. 155-158, (2002). https://doi.org/10.1016/S0378-8741(02)00174-5
  4. D.A. Dalton, L. Langeberg, N.C. Treneman, "Correlations between the ascorbate-glutathione pathway and effectiveness in legume root nodules", Physiol Plant, Vol. 87, pp. 365-370, (1993). https://doi.org/10.1111/j.1399-3054.1993.tb01743.x
  5. O.I. Aruoma, "Nutrition and health aspects of free radicals and antioxidant", Food and Chem. Toxicol., Vol. 32, No 7 pp.671-683, (1994). https://doi.org/10.1016/0278-6915(94)90011-6
  6. B. Halliwell, R. Aeschbach, J. Loliger, O.I. Aruoma, "The characterization of antioxidants", Food Chem Toxicol., Vol. 33, No 7 pp. 601-617, (1995). https://doi.org/10.1016/0278-6915(95)00024-V
  7. G. Samak, R.P. Shenoy, S.M. Manjunatha, K.S. Vinayak, "Superoxide and hydroxyl radical scavenging actions of botanical extracts of Wagatea spicata", Food Chem., Vol. 115, No 2 pp. 631-634, (2009). https://doi.org/10.1016/j.foodchem.2008.12.078
  8. C.T. Ho, Phenolic compounds in food. In : Phenolic compounds in food and their effects on health II. Maple Press. New York. p. 2-7. Huan MT, Ho CT, Lee CY Editors, (1992).
  9. K. Azuma, M. Kakayama, M. Koshika, K. Ippoushi, Y. Yamaguchi, K. Kohata, Y. Yamauchi, H. Ito, H. Higashio, "Phenolic antioxidant from the leaves of Corchorus olitoriumL", J Agric Food Chem, Vol. 47, pp. 3963-3966, (1999). https://doi.org/10.1021/jf990347p
  10. S.S. Ham, J.K. Hong, J.H. Lee, "Antimutagenic effects of juices from edible Korean wild herbs", J Food Sci Nutr, Vol 2, pp. 155-161, (1997).
  11. E. Salminen, J. Rintala, "Anaerobic digestion of organic solid poultry slaughterhouse waste a review", Bioresour. Technol, Vol. 83, pp. 13-26, (2002). https://doi.org/10.1016/S0960-8524(01)00199-7
  12. A.L. McCarthy, Y.C. O'Callaghan, N.M. O'Brien, "Protein Hydrolysates from Agricultural Crops-Bioactivity and Potential for Functional Food Development", Agriculture, Vol 3, pp 112-130, (2013). https://doi.org/10.3390/agriculture3010112
  13. L. Qing, L.i. Yi, M. Peter, I. Brent, "Commercial proteases: Present and future", FEBS Letters, Vol. 587, pp. 1155-1163, (2013). https://doi.org/10.1016/j.febslet.2012.12.019
  14. B. Cigic, M. Zelenik-Blatnik, "Preparation and characterization of chicken egg white hydrolysate", Acta Chimica Slovenica,.Vol. 51, pp. 177-188, (2004).
  15. K. Elavarasan, B.A. Shamasundar, B. Faraha, H. Howell, "Angiotensin I-converting enzyme (ACE) inhibitory activity and structural properties of ovenand freeze-dried protein hydrolysate from fresh water fish (Cirrhinus mrigala)", Food Chemistry, Vol. 206, pp. 210-216, (2016). https://doi.org/10.1016/j.foodchem.2016.03.047
  16. I.V. Nikolaev, S. Sforza, F. Lambertini, D.Y. Ismailova, V.P. Khotchenkov, V.G. Volik, A. Dossena, V.O. Popov, O.V. Koroleva, "Biocatalytic conversion of poultry processing leftovers: Optimization of hydrolytic conditions and peptide hydrolysate characterization", Food Chemistry, Vol. 197, pp. 611-621, (2016). https://doi.org/10.1016/j.foodchem.2015.10.114
  17. Y.Y. Sun, D.D. Pan, Y.X. Guo, J.J. Li, "Purification of chicken breast protein hydrolysate and analysis of its antioxidant activity", Food and Chemical Toxicology, Vol. 50, pp. 3397-3404, (2012). https://doi.org/10.1016/j.fct.2012.07.047
  18. T. Mesut, E. Nevzat, O Serkan, "Efficient production of l-lactic acid from chicken feather protein hydrolysate and sugar beet molasses by the newly isolated Rhizopus oryzae TS-61Original", Food and Bioproducts Processing, Vol. 90, pp. 773-779, (2012). https://doi.org/10.1016/j.fbp.2012.05.003
  19. F. Nahed, K. Naourez, H. Anissa, H.M. Ibtissem, D. Ines, N. Moncef, "Total solubilisation of the chicken feathers by fermentation with a keratinolytic bacterium, Bacillus pumilus A1, and the production of protein hydrolysate with high antioxidative activity", Process Biochemistry, Vol. 46, pp. 1731-1737, (2012).
  20. O. John, O.G. Abraham, T.M. Sunday, A.A. Rotimi, E.A. Michel, "Kinetics of in vitro renin and angiotensin converting enzyme inhibition by chicken skin protein hydrolysates and their blood pressure lowering effects in spontaneously hypertensive rats", Journal of Functional Foods, Vol. 14, pp. 133-143, (2015). https://doi.org/10.1016/j.jff.2015.01.031
  21. S. Jain, A.K. Anal, "Optimization of extraction of functional protein hydrolysates from chicken egg shell membrane (ESM) by ultrasonic assisted extraction (UAE) and enzymatic hydrolysis", LWT - Food Science and Technology, Vol. 69, pp. 295-302, (2016). https://doi.org/10.1016/j.lwt.2016.01.057
  22. RC. Clark, "The primary structure of avian phosvitins. Contributions through the Edman degradation of methylmercaptovitins prepared from the constituent phosphoproteins". Int. J. Biochem. Vol. 17, pp. 983-988. (1985). https://doi.org/10.1016/0020-711X(85)90243-5
  23. G. Tarborsky, Interaction between phosvitin and iron and its effect on a rearrangement of phosvitin structure. Biochem.-US. 2, 266-271, (1963). https://doi.org/10.1021/bi00902a010
  24. I. Choi, C. Jung, H. Seog, H. Choi, "Purification of phosvitin from egg yolk and determination of its physicochemical properties". Food Sci. Biotechnol. Vol. 13, pp. 434-437. (2004).
  25. S.K. Lee, J.H. Han, E. A. Decker, "Antioxidant activity of phosvitin in phosphatidylcholine liposomes and meat model systems". J. Food Sci. Vol. 67, pp. 37-41.(2002). https://doi.org/10.1111/j.1365-2621.2002.tb11355.x
  26. C.L. Lu, R.C. Baker, "Characteristics of egg yolk phosvitin as an antioxidant for inhibiting metal-catalyzed phospholipid oxidations". Poultry Sci., Vol. 65, pp. 2065-2070. (1986). https://doi.org/10.3382/ps.0652065
  27. J. Park, S. Na, Y. Lee, "Present and future of nonthermal food processing technology." Food Sci. Ind. Vol. 75, pp. 1-20. (2010).
  28. R.Z. Gu, W.Y. Liu, F. Lin, Z.T. Jin, L. Chen, W.X. Yi, J. Lu, M.Y. Cai, "Antioxidant and angiotensin I-converting enzyme inhibitory properties of oligopeptides derived from black-bone silky fowl (Gallus gallus domesticus Brisson) muscle", Food Research International, Vol. 49, pp. 326-333, (2012). https://doi.org/10.1016/j.foodres.2012.07.009
  29. H.S. Chae, Y.M. Yoo, C.N. Ahn, S.H. Cho, B.D. Sang, Y.G. Kim, J.M. Lee, S.K. Yun, Y.I. Choi, "Feeding Effects of the High Pressure Boiled Extract(HPBE) of the Ogol Chicken on Weight Gain and Serum Lipid Composition of Rat", Korean J Poult Sci, Vol. 30, pp. 135-143, (2003).
  30. H.S. Chae, Y.M. Yoo, C.N. Ahn, S.H. Cho, B.Y. Park, J.M. Lee, Y.K. Kim, S.G. Yun, Y.I. Choi, "Chemical and Sensory Characteristics of Boiled Soup Extracted from Crossbred Ogol Chicken as Affected by the Level of Flavourzyme", Korean J Poult Sci, Vol. 30, pp. 11-16, (2003).
  31. H.S. Yoo, K.H. Chung, K.J. Lee, D.H. Kim, J.H. An, "Effect of Gallus gallus var. domesticus (Yeonsan ogolgye) Extracts on Osteoblast Differentiation and Osteoclast Formation", Microbiol. Biotechnol. Lett. Vol. 43, pp. 322-329, (2015). https://doi.org/10.4014/mbl.1508.08006
  32. H.S. Chae, C.N. Ahn, Y.M. Yoo, J.S. Ham, J.M. Lee, S.K. Yoon, Y.I. Choi, "The Effects of the High Pressure Boiled Extracts (HPBE) of the Ogol Chicken with Herbs on the Hormones, Cytokine, Specific Antibody of Serum in the Rat", Korean J Food Sci Anim Res., Vol. 24, pp. 283-292, (2004).
  33. W.J. Lahl, S.D. Braun, "Enzymatic production of protein hydrolysates for food use", Food Technol, Vol. 48, pp. 68-71, (1994).
  34. R.D. Bernardini, P. Harnedy, D. Bolton, J. Kerry, E. O'Neill, A.M. Mullen, M. Hayes "Antioxidant and antimicrobial peptidic hydrolysates from muscle protein sources and by-products", Food Chemistry, Vol. 124, pp. 1296-1307, (2011). https://doi.org/10.1016/j.foodchem.2010.07.004
  35. H.W. Seo, E.Y. Jung, G.W. Go, G.D. Kim, S.T. Joo, H.S. Yang, "Optimization of ydrolysis conditions for bovine plasma protein using response surface methodology", Original Research Article Food Chemistry. Vol. 185, pp. 106-111, (2015).
  36. S. Zhu, C.Y. Wang, P Zhang, "Characterization and in vitro antioxidation of papain hydrolysate from black-bone silky fowl (Gallus gallus domesticus Brisson) muscle and its fractions", Food Research International, Vol. 44, pp. 133-138, (2011). https://doi.org/10.1016/j.foodres.2010.10.050
  37. S.S. Pitchumoni, P.M. Doraiswamy, "Current status of antioxidant therapy for Alzheimer's disease", J Am Geriatr Soc., Vol. 46, pp. 1566-1572. (1998). https://doi.org/10.1111/j.1532-5415.1998.tb01544.x
  38. M.S. Blois, "Antioxidant determinations by the use of a stable free radica", Nature, Vol. 18, pp. 1000, (2004).
  39. X.B. Fan, C.J. Li, D.N. sha, "The establishment of o-phenanthroline chemiluminescent system for measuring OH radica", Basic Medical Sciences and Clinics. Vol. 18, No. 6 pp. 468-471. (1998).
  40. W. Yu, Y. Zhao, Z. Xue, H. Jin, D. Wang, "The antioxidant properties of lycopene concentrate extracted from tomato paste", Journal of the American oil Chemists Society. Vol. 78, No. 7 pp. 697-701. (2001). https://doi.org/10.1007/s11746-001-0328-6
  41. I. Gulcin, "Antioxidant activity of caffeic acid (3,4dihydroxycinnamic acid)", Toxicol., Vol. 217 No. 2 pp. 213-220, (2006). https://doi.org/10.1016/j.tox.2005.09.011
  42. S.H. Shon, I.H. Cho, Y.S. Kim, "Comparison of pyrazines formed in chicken by products hydrolyzed by Enzymes", Korea J. Soc. Food Cookery Sci., Vol. 20, pp. 265-270, (2004).
  43. I. Gulcin, D. Berashvili, A. Gepdiremen, "Antiradical and antioxidant activity of total anthocyanins from Perilla pankinensis decne", J. Ethmopharmacol., Vol. 101, No 1-3 pp. 287-293, (2005). https://doi.org/10.1016/j.jep.2005.05.006
  44. RE. Aluko, E. Monu, "Functional and bioactive properties of quinoa seed protein hydrolysates", Journal of Food Science, Vol. 68, pp. 1254-1258, (2003). https://doi.org/10.1111/j.1365-2621.2003.tb09635.x
  45. S. Sakanaka, Y. Tachibana, Y. Okada, "Preparation and antioxidant properties of extracts of Japanese persimmon leaf tea (kakinoha-cha)", Food Chemistry, Vol.89, pp.569-575. (2005). https://doi.org/10.1016/j.foodchem.2004.03.013
  46. S.N. Jamdar, V. Rajalakshmi, A. Sharma, "Antioxidant and ACE inhibitory properties of poultry viscera protein hydrolysate and its peptide fractions", Journal of Food Biochemistry, Vol. 36, pp. 494-501, (2012). https://doi.org/10.1111/j.1745-4514.2011.00562.x
  47. T.Y. Kim, T.W. Jeon, S.H. Yeo, S.B. Kim, J.S. Kim, J.S. Kwak, "Antimicrobial, antioxidant and SOD-like activity effect of Jubak extracts", Korean J Food Nutr, Vol. 23, pp. 299-305. (2010).
  48. H.W. Kang, "Antioxidative activity of extracts from Cichorium endivia L.", J Korean Soc Food Sci Nutr, Vol. 41, pp. 1487-1492, (2012). https://doi.org/10.3746/jkfn.2012.41.11.1487
  49. K. Kitani, C. Minami, T. Yamamoto, S. Kanai, G.O. Ivy, M.C. Carrillo, "Pharmacological interventions in aging and age-associated disorders : potentials of propargylamines for human use." Ann N Y Acad Sci, Vol. 959, pp. 295-307, (2002). https://doi.org/10.1111/j.1749-6632.2002.tb02101.x
  50. M.Y. Yoo, S.K. Kim, J.Y. Yang, "Characterization of an antioxidant from sporophyll of Undaria pinnatifida", Korean J Microbiol Biotechnol, Vol. 32, pp. 307-311, (2004).
  51. A.T. Girgih, C.C. Udenigwe, R.E. Aluko, "In vitro antioxidant properties of hemp seed (Cannabis sativa L.) protein hydrolysate fractions", Journal of the American Oil Chemists Society, Vol. 88, pp. 381-389, (2010).