DOI QR코드

DOI QR Code

Mechanical Properties on Poly Lactic Acid based Graft Copolymer with Polyethylene Glycol Acrylate

Polyethylene Glycol Acrylate를 이식 공중합 기반의 Poly Lactic Acid에 관한 기계적 특성

  • 김기준 (대진대학교 공과대학 화학공학과) ;
  • 성완모 (대진대학교 공과대학 화학공학과) ;
  • 김주한 (대진대학교 공과대학 화학공학과) ;
  • 정형학 (대진대학교 공과대학 화학공학과)
  • Received : 2017.08.20
  • Accepted : 2017.09.07
  • Published : 2017.09.30

Abstract

Biodegradable enzymes such as lipase and proteinase can hydrolyze not only fatty acid esters and triglycerides, but also aliphatic polyesters. We measured the biodegradability that biodegradable enzymes have an important role in the degradation of natural aliphatic poly material such as PLA, corn starch, and polyethylene glycol in the natural environment. However, we investigated on the biodegradability of PLA, PLA and Polyethylene acrylate blended, and PLAcoPolyethylene polymerized with PLA graft copolymer Polyethylene glycol acrylate. When prepared biodegradable polymers. the Mechanical properties of them were measured on Biodegradability, thermal properties, real time in-situ electrical monitoring of polymers resin. Therefore BOD and biodegradation of PLAcoPolyethylene was graft copolymerized with PLA and polyethylene acrylate were measured at a lower rate than the other samples.

리파아제 및 프로테이나아제와 같은 생분해성 효소는 지방산 에스테르 및 트리글리 세라이드뿐만 아니라 지방족 폴리에스테르를 가수 분해가 가능하다. 본 연구에서는 생분해성 효소가 자연 환경에서 PLA, 옥수수 전분 및 폴리에틸렌글리콜 등의 천연 지방족 폴리 물질이 분해에 중요한 역할인 생분해성을 측정했다. 본 실험에서는 PLA, PLA와 폴리에틸렌아크릴레이트, PLA 그라프트 중합체인 폴리에틸렌글리콜아크릴레이트를 사용한 PLAcoPolyethylene의 생분해성에 대해 실험하였다. 생분해성 고분자를 합성할 때. 이들의 기계적 특성은 생분해성도, 열적특성, 실시간으로 폴리머 수지의 전기적 모니터링을 통해 실험측정 결과, BOD와 PLAcoPolyethylene의 생분해도는 PLA와 그라프트 공중합된 폴리에틸렌아크릴레이트는 다른 시료보다 낮은 속도로 측정되었다.

Keywords

References

  1. T. Sato, Y. Nambu, T. Endo, Preparation of cellulose derivatives containing the viologen moiety, J. Polym. Sci. Part C: Polym. Lett. 26, 341-345, (1988). https://doi.org/10.1002/pol.1988.140260802
  2. Y. Ohya, T.Z. Huang, T. Ouchi, K. Hasegawa, J. Tamura, K. Kadowaki, T. Matsumoto, S. Suzuki, M. Suzuki, Synthesis and antitumor activity of ${\alpha}$-1,4-polygalactosamine and N-acetyl-${\alpha}$-1,4-polygalactosamine immobilized 5-fluorouracils through hexamethylene spacer groups via urea, urea bonds, J. Control. Release 17, 259-266, (2011).
  3. B. George, S.N. Maiti, I.K. Varma, Graft copolymerization of methacrylate onto natural rubber: effect of polymerization conditions on particle morphology, J. Elastomers Plast. 38, 319-331, (2010).
  4. N. Nishioka, M. Tabata, M. Saito, N. Kishigami, M. Iwamoto, M. Uno, Thermal decomposition of cellulose/synthetic polymer blends containing grafted products. III. Cellulose' poly (methyl methacrylate) blends, Polym. J. 29, 508-513, (1999).
  5. N. Takano, T. Kawakami, Y. Kawa, M. Asano, H.Watabe, M. Ito, Y. Soma, Y. Kubota, M. Mizoguchi, Fibronectin combined with stem cell factor plays an important role in melanocyte proliferation, differentiation and migration in cultured mouse neural crest cells, Pigment Cell Res. 15, 192-200, (2000).
  6. D. Ferrera, S. Poggi, C. Biassoni, G.R. Dickson, S. Astigiano, O. Barbieri, A. Favre, A.T. Franzi, A. Strangio, A. Federici, P. Manduca, Three-dimensional cultures of normal human osteoblasts: proliferation and differentiation potential in vitro and upon ectopic implantation in nude mice, Bone 30, 718-725, (2002). https://doi.org/10.1016/S8756-3282(02)00691-9
  7. J.C. Dunn, M.L. Yarmush, H.G. Koebe, R.G. Tompkins, Hepatocyte function and extracellular matrix geometry: long-term culture in a sandwich configuration, FASEB J. 3, 174-177, (2009).
  8. Brooks, B. W. and Richmond, H. N., Dynamics of liquid-liquid phase inversion using nonionic surfactant, Colloids and Surfaces 58, 131-148, (1991). https://doi.org/10.1016/0166-6622(91)80203-Z
  9. Finkenstadt, V. L. and Tisserat, B., Poly(lactic acid) and osage orange wood fiber composites for agricultural mulch films, Industrial Crops and Products 31, 316-320, (2010). https://doi.org/10.1016/j.indcrop.2009.11.012
  10. Ray, S. S., Okamoto, K. and Okamoto, M., Structure property relationship in biodegradable poly(butylene succinate)/ layered silicate nanocomposites, Macromolecules 36, 2355-2367, (2003). https://doi.org/10.1021/ma021728y
  11. Liu, R., Ma, G. H., Wan, Y. H. and Su, Z. G., Influence of process parameters on the size distribution of PLA microcapsules prepared by combining membrane emulsification technique and double emulsion-solvent evaporation method, Colloids and Surfaces B: Biointerfaces 45(3), 144-153, (2005). https://doi.org/10.1016/j.colsurfb.2005.08.004
  12. Zambaux, M. F., Bonneaux, F., Gref, R., Maincent, P., Dellacherie, E., Alonso, M. J., Labrude, P. and Vigneron, C., Influence of experimental parameters on the characteristics of poly(lactic acid) nanoparticles prepared by a double emulsion method, Journal of Controlled Release 50, 31-40, (1998). https://doi.org/10.1016/S0168-3659(97)00106-5
  13. Uchida, T., Nagareya, N., Sakakibara, S., Konishi, Y., Nakai, A., Nishikata, M., Matsuyama, K. and Yoshida, K., Preparation and characterization of polylactic acid microspheres containing bovine insulin by a W/O/W emulsion solvent evaporation method, Chemical & Pharmaceutical Bulletin 45(9), 1539-1543, (1997). https://doi.org/10.1248/cpb.45.1539
  14. Sadeghnejad, A., Aroujalian, A., Raisi, A., & Fazel, S. Antibacterial nano silver coating on the surface of polyethylene films using corona discharge. Surface and Coatings Technology, 245-251, (2014).
  15. Sanuja, S., Agalya, A., & Umapathy, M. J. Studies on magnesium oxide reinforced chitosan bionanocomposite incorporated with clove oil for active food packaging application. International Journal of Polymeric Materials and Polymeric Biomaterials, 63, 733-740. (2014). https://doi.org/10.1080/00914037.2013.879445