References
- Luo LF, Wu WH, Zhou YJ, Yan J, Yang GP, Ouyang DS. 2010. Antihypertensive effect of Eucommia ulmoides Oliv. extracts in spontaneously hypertensive rats. J. Ethnopharmacol. 129: 238-243. https://doi.org/10.1016/j.jep.2010.03.019
- Sih CJ, Ravikumar P, Huang FC, Buckner C, Whitlock JH. 1976. Isolation and synthesis of pinoresinol diglucoside, a major antihypertensive principle of Tu-Chung (Eucommia ulmoides, Oliver). J. Am. Chem. Soc. 98: 5412-5413. https://doi.org/10.1021/ja00433a070
- Xie LH, Akao T, Hamasaki K, Deyama T, Hattori M. 2003. Biotransformation of pinoresinol diglucoside to mammalian lignans by human intestinal microflora, and isolation of Enterococcus faecalis strain PDG-1 responsible for the transformation of (+)-pinoresinol to (+)-lariciresinol. Chem. Pharm. Bull. 51: 508-515. https://doi.org/10.1248/cpb.51.508
- Wang CZ, Ma XQ, Yang DH, Guo ZR, Liu GR, Zhao GX, et al. 2010. Production of enterodiol from defatted flaxseeds through biotransformation by human intestinal bacteria. BMC Microbiol. 10: 115. https://doi.org/10.1186/1471-2180-10-115
- Lee SY, Kwon HK, Lee SM. 2011. SHINBARO, a new herbal medicine with multifunctional mechanism for joint disease: first therapeutic application for the treatment of osteoarthritis. Arch. Pharm. Res. 34: 1773-1777. https://doi.org/10.1007/s12272-011-1121-0
- Lee AS, Ellman MB, Yan D, Kroin JS, Cole BJ, van Wijnen AJ, et al. 2013. A current review of molecular mechanisms regarding osteoarthritis and pain. Gene 527: 440-447. https://doi.org/10.1016/j.gene.2013.05.069
- Lee SM, Kim HJ, Ha YJ, Park YN, Lee SK, Park YB, et al. 2012. Targeted chemo-photothermal treatments of rheumatoid arthritis using gold half-shell multifunctional nanoparticles. ACS Nano 7: 50-57.
- Hemmati S, Schmidt TJ, Fuss E. 2007. (+)-Pinoresinol/(-)-lariciresinol reductase from Linum perenne Himmelszelt involved in the biosynthesis of justicidin B. FEBS Lett. 581: 603-610. https://doi.org/10.1016/j.febslet.2007.01.018
- Hano C, Martin I, Fliniaux O, Legrand B, Gutierrez L, Arroo R, et al. 2006. Pinoresinol-lariciresinol reductase gene expression and secoisolariciresinol diglucoside accumulation in developing flax (Linum usitatissimum) seeds. Planta 224: 1291-1301. https://doi.org/10.1007/s00425-006-0308-y
- Renouard S, Tribalatc M-A, Lamblin F, Mongelard G, Fliniaux O, Corbin C, et al. 2014. RNAi-mediated pinoresinol lariciresinol reductase gene silencing in flax (Linum usitatissimum L.) seed coat: consequences on lignans and neolignans accumulation. J. Plant Physiol. 171: 1372-1377. https://doi.org/10.1016/j.jplph.2014.06.005
- Wang PC, Ran XH, Luo HR, Ma QY, Liu YQ, Zhou J, et al. 2013. Phenolic compounds from the roots of Valeriana officinalis var. latifolia. J. Braz. Chem. Soc. 24: 1544-1548.
- Wang Q, Wang C, Zuo Y, Wang Z, Yang B, Kuang H. 2012. Compounds from the roots and rhizomes of Valeriana amurensis protect against neurotoxicity in PC12 cells. Molecules 17: 15013-15021. https://doi.org/10.3390/molecules171215013
- Liu WJ, Wang LB. 2010. The lignans from Daphne giraldii Nitsche. Chinese J. Med. Chem. 4: 014.
- Dong X, Yang C, Xu G, Cao S, Fu J, Lin L, et al. 2016. Chemical constituents from Daphne giraldii Nitsche and their contents simultaneous determination by HPLC. Evid. Based Complement. Alternat. Med. 2016: 9492368.
-
Wang JL, Liu EW, Zhang Y, Wang T, Han LF, Gao XM. 2012. Validation of a HPLC-tandem MS/MS method for pharmacokinetics study of (+)-pinoresinol-di-
${\beta}$ -D-glucopyranoside from Eucommia ulmoides Oliv extract in rats' plasma. J. Ethnopharmacol. 139: 337-342. https://doi.org/10.1016/j.jep.2011.10.037 - Liu E, Han L, Wang J, He W, Shang H, Gao X, et al. 2012. Eucommia ulmoides bark protects against renal injury in cadmium-challenged rats. J. Med. Food 15: 307-314. https://doi.org/10.1089/jmf.2011.1756
- Nam JW, Kim SY, Yoon T, Lee YJ, Kil YS, Lee YS, et al. 2013. Heat shock factor 1 inducers from the bark of Eucommia ulmoides as cytoprotective agents. Chem. Biodivers. 10: 1322-1327. https://doi.org/10.1002/cbdv.201200401
- Huang RH, Xiang Y, Liu XZ, Zhang Y, Hu Z, Wang DC. 2002. Two novel antifungal peptides distinct with a fivedisulfide motif from the bark of Eucommia ulmoides Oliv. FEBS Lett. 521: 87-90. https://doi.org/10.1016/S0014-5793(02)02829-6
- Vermes B, Seligmann O, Wagner H. 1991. Synthesis of biologically active tetrahydro-furofuranlignan-(syringin, pinoresinol)-mono-and bis-glucosides. Phytochemistry 30: 3087-3089. https://doi.org/10.1016/S0031-9422(00)98258-X
- Jeong EJ, Seo H, Yang H, Kim J, Sung SH, Kim YC. 2012. Anti-inflammatory phenolics isolated from Juniperus rigida leaves and twigs in lipopolysaccharide-stimulated RAW264. 7 macrophage cells. J. Enzyme Inhib. Med. Chem. 27: 875-879. https://doi.org/10.3109/14756366.2011.625025
- Munin A, Edwards-Levy F. 2011. Encapsulation of natural polyphenolic compounds: a review. Pharmaceutics 3: 793-829. https://doi.org/10.3390/pharmaceutics3040793
- Tschaplinski TJ, Standaert RF, Engle NL, Martin MZ, Sangha AK, Parks JM, et al. 2012. Down-regulation of the caffeic acid O-methyltransferase gene in switchgrass reveals a novel monolignol analog. Biotechnol. Biofuels 5: 1. https://doi.org/10.1186/1754-6834-5-1
- Kao TT, Lin CC, Shia KS. 2015. The total synthesis of retrojusticidin B, justicidin E, and helioxanthin. J. Org. Chem. 80: 6708-6714. https://doi.org/10.1021/acs.joc.5b00866
- Shi J, Liu C, Liu L, Yang B, Zhang Y. 2012. Structure identification and fermentation characteristics of pinoresinol diglucoside produced by Phomopsis sp. isolated from Eucommia ulmoides Oliv. Appl. Microbiol. Biotechnol. 93: 1475-1483. https://doi.org/10.1007/s00253-011-3613-8
- Zhang Y, Shi J, Gao Z, Yangwu R, Jiang H, Che J, et al. 2015. Production of pinoresinol diglucoside, pinoresinol monoglucoside, and pinoresinol by Phomopsis sp. XP-8 using mung bean and its major components. Appl. Microbiol. Biotechnol. 99: 4629-4643. https://doi.org/10.1007/s00253-015-6491-7
- Zhang Y, Shi J, Gao Z, Che J, Shao D, Liu Y. 2016. Comparison of pinoresinol diglucoside production by Phomopsis sp. XP-8 in different media and the characterisation and product profiles of the cultivation in mung bean. J. Sci. Food Agric. 96: 4015-4025. https://doi.org/10.1002/jsfa.7593
- Wang W, Shi J, Yang B. 2008. Optimization of conditions for production of pinoresinol diglucosideby a strain of Phoma sp. Trans. Chin. Soc. Agric. Eng. 24: 287-290.
- Liu G, Xiao X, Jiang H, Mei C, Ding Y. 2013. Detection of pH variable in solid-state fermentation process by FT-NIR spectroscopy and BP-Adaboost. Jiangsu Daxue Xuebao 34: 574-578.
- Wang L, Meselhy MR, Li Y, QIN G-W, Hattori M. 2000. Human intestinal bacteria capable of transforming secoisolariciresinol diglucoside to mammalian lignans, enterodiol and enterolactone. Chem. Pharm. Bull. 48: 1606-1610. https://doi.org/10.1248/cpb.48.1606
- Heinonen S, Nurmi T, Liukkonen K, Poutanen K, Wahala K, Deyama T, et al. 2001. In vitro metabolism of plant lignans: new precursors of mammalian lignans enterolactone and enterodiol. J. Agric. Food Chem. 49: 3178-3186. https://doi.org/10.1021/jf010038a
- Xie LH, Ahn EM, Akao T, Abdel-Hafez AAM, Nakamura N, Hattori M. 2003. Transformation of arctiin to estrogenic and antiestrogenic substances by human intestinal bacteria. Chem. Pharm. Bull. 51: 378-384. https://doi.org/10.1248/cpb.51.378
- Zhao J, Shan T, Mou Y, Zhou L. 2011. Plant-derived bioactive compounds produced by endophytic fungi. Mini Rev. Med. Chem. 11: 159-168. https://doi.org/10.2174/138955711794519492
- Grishko VV, Tarasova EV, Ivshina IB. 2013. Biotransformation of betulin to betulone by growing and resting cells of the actinobacterium Rhodococcus rhodochrous IEGM 66. Process Biochem. 48: 1640-1644. https://doi.org/10.1016/j.procbio.2013.08.012
- Fan L, Dong Y, Xu T, Zhang H, Chen Q. 2013. Gastrodin production from p-2-hydroxybenzyl alcohol through biotransformation by cultured cells of Aspergillus foetidus and Penicillium cyclopium. Appl. Biochem. Biotechnol. 170: 138-148. https://doi.org/10.1007/s12010-013-0166-6
- Mikhailova R, Sapunova L, Lobanok A, Yasenko M, Shishko ZF. 2000. Isoelectrophoretic characterization of extracellular polygalacturonases of various Aspergillus alliaceus strains. Microbiology 69: 162-166. https://doi.org/10.1007/BF02756192
- Fan Y, Yu Y, Jia X, Chen X, Shen Y. 2013. Cloning, expression and medium optimization of validamycin glycosyltransferase from Streptomyces hygroscopicus var. jinggangensis for the biotransformation of validoxylamine A to produce validamycin A using free resting cells. Bioresour. Technol. 131: 13-20. https://doi.org/10.1016/j.biortech.2012.12.021
- Satake H, Ono E, Murata J. 2013. Recent advances in the metabolic engineering of lignan biosynthesis pathways for the production of transgenic plant-based foods and supplements. J. Agric. Food Chem. 61: 11721-11729. https://doi.org/10.1021/jf4007104
- Yang Y, Jin Z, Jin Q, Dong M. 2015. Isolation and fatty acid analysis of lipid-producing endophytic fungi from wild Chinese Torreya grandis. Microbiology 84: 710-716. https://doi.org/10.1134/S0026261715050173
- Singhania RR, Patel AK, Soccol CR, Pandey A. 2009. Recent advances in solid-state fermentation. Biochem. Eng. J. 44: 13-18. https://doi.org/10.1016/j.bej.2008.10.019
- Li Y, Peng X, Chen H. 2013. Comparative characterization of proteins secreted by Neurospora sitophila in solid-state and submerged fermentation. J. Biosci. Bioeng. 116: 493-498. https://doi.org/10.1016/j.jbiosc.2013.04.001
- Pandey A, Selvakumar P, Soccol CR, Nigam P. 1999. Solidstate fermentation for the production of industrial enzymes. Curr. Sci. 77: 149-162.
- Singhania RR, Sukumaran RK, Patel AK, Larroche C, Pandey A. 2010. Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme Microb. Technol. 46: 541-549. https://doi.org/10.1016/j.enzmictec.2010.03.010
- Tobimatsu Y, Davidson CL, Grabber JH, Ralph J. 2011. Fluorescence-tagged monolignols: synthesis, and application to studying in vitro lignification. Biomacromolecules 12: 1752-1761. https://doi.org/10.1021/bm200136x
- Liu C, Shi J, Zhou X, Yang B, Dou X. 2011. Isolation, identification and growth conditions of endophytic fungi of Eucommia ulmoides Oliv. for production of PDG. J. Northwest A. F. Univ. 39: 203-209.
- Feng S, Gan Z, Zhai X, Fu P, Sun W. 2006. Content comparison of pinoresinol diglucoside in original and reborn bark of Eucommia ulmoides. J. Chin. Med. Mater. 29: 792-794.
- Yao LN, Su YF, Yin ZY, Qin N, Li TX, Si CL, et al. 2010. A new phenolic glucoside and flavonoids from the bark of Eucommia ulmoides Oliv. Holzforschung 64: 571-575.
- Golubev W, Kulakovskaya T, Shashkov A, Kulakovskaya E, Golubev N. 2008. Antifungal cellobiose lipid secreted by the epiphytic yeast Pseudozyma graminicola. Microbiology 77: 171-175. https://doi.org/10.1134/S0026261708020082
- Cantrell C, Schrader K, Mamonov L, Sitpaeva G, Kustova T, Dunbar C, et al. 2005. Isolation and identification of antifungal and antialgal alkaloids from Haplophyllum sieversii. J. Agric. Food Chem. 53: 7741-7748. https://doi.org/10.1021/jf051478v
- Qi F, Jing T, Zhan Y. 2012. Characterization of endophytic fungi from Acer ginnala Maxim. in an artificial plantation: media effect and tissue-dependent variation. PLoS One 7: e46785. https://doi.org/10.1371/journal.pone.0046785
- Zhang Y, Shi J, Liu L, Gao Z, Che J, Shao D, Liu Y. 2015. Bioconversion of pinoresinol diglucoside and pinoresinol from substrates in the phenylpropanoid pathway by resting cells of Phomopsis sp. XP-8. PLoS One 10: e0137066. https://doi.org/10.1371/journal.pone.0137066