DOI QR코드

DOI QR Code

Bioconversion of Pinoresinol Diglucoside from Glucose Using Resting and Freeze-Dried Phomopsis sp. XP-8 Cells

  • Gao, Zhenhong (College of Food Science and Engineering, Northwest A & F University) ;
  • Rajoka, Muhammad Shahid Riaz (Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University) ;
  • Zhu, Jing (Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University) ;
  • Zhang, Zhiwei (College of Food Science and Engineering, Qingdao Agriculture University) ;
  • Zhang, Yan (College of Food Science and Engineering, Northwest A & F University) ;
  • Che, Jinxin (College of Food Science and Engineering, Northwest A & F University) ;
  • Xu, Xiaoguang (Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University) ;
  • Shi, Junling (Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University)
  • Received : 2017.03.24
  • Accepted : 2017.06.13
  • Published : 2017.08.28

Abstract

Phomopsis sp. XP-8 (an endophytic fungus) was previously found to produce pinoresinol diglucoside (PDG), a major antihypertensive compound of Tu-Chung (the bark of Eucommia ulmoides Oliv.), which is widely used in Chinese traditional medicines. In the present study, two bioconversion systems were developed for the production of PDG in Tris-HCl buffer containing glucose and Phomopsis sp. XP-8 cells (both resting and freeze-dried). When other factors remained unchanged, the bioconversion time, glucose concentration, cell ages, cell dosage, pH, temperature, and stirring speed influenced PDG production in a similar and decreasing manner after an initial increase with increasing levels for each factor. Considering the simultaneous change of various factors, the optimal conditions for PDG production were established as 70 g/l cells (8-day-old), 14 g/l glucose, $28^{\circ}C$, pH 7.5, and 180 rpm for systems employing resting cells, and 3.87 g/l cells, 14.67 g/l glucose, $28^{\circ}C$, pH 7.5, and 180 rpm for systems employing freeze-dried cells. The systems employing freeze-dried cells showed lower peak PDG production ($110.28{\mu}g/l$), but at a much shorter time (12.65 h) compared with resting cells (23.62 mg/l, 91.5 h). The specific PDG production levels were 1.92 and $24{\mu}g$ per gram cells per gram glucose for freeze-dried cells and resting cells, respectively. Both systems indicated a new and potentially efficient way to produce PDG independent of microbial cell growth.

Keywords

References

  1. Luo LF, Wu WH, Zhou YJ, Yan J, Yang GP, Ouyang DS. 2010. Antihypertensive effect of Eucommia ulmoides Oliv. extracts in spontaneously hypertensive rats. J. Ethnopharmacol. 129: 238-243. https://doi.org/10.1016/j.jep.2010.03.019
  2. Sih CJ, Ravikumar P, Huang FC, Buckner C, Whitlock JH. 1976. Isolation and synthesis of pinoresinol diglucoside, a major antihypertensive principle of Tu-Chung (Eucommia ulmoides, Oliver). J. Am. Chem. Soc. 98: 5412-5413. https://doi.org/10.1021/ja00433a070
  3. Xie LH, Akao T, Hamasaki K, Deyama T, Hattori M. 2003. Biotransformation of pinoresinol diglucoside to mammalian lignans by human intestinal microflora, and isolation of Enterococcus faecalis strain PDG-1 responsible for the transformation of (+)-pinoresinol to (+)-lariciresinol. Chem. Pharm. Bull. 51: 508-515. https://doi.org/10.1248/cpb.51.508
  4. Wang CZ, Ma XQ, Yang DH, Guo ZR, Liu GR, Zhao GX, et al. 2010. Production of enterodiol from defatted flaxseeds through biotransformation by human intestinal bacteria. BMC Microbiol. 10: 115. https://doi.org/10.1186/1471-2180-10-115
  5. Lee SY, Kwon HK, Lee SM. 2011. SHINBARO, a new herbal medicine with multifunctional mechanism for joint disease: first therapeutic application for the treatment of osteoarthritis. Arch. Pharm. Res. 34: 1773-1777. https://doi.org/10.1007/s12272-011-1121-0
  6. Lee AS, Ellman MB, Yan D, Kroin JS, Cole BJ, van Wijnen AJ, et al. 2013. A current review of molecular mechanisms regarding osteoarthritis and pain. Gene 527: 440-447. https://doi.org/10.1016/j.gene.2013.05.069
  7. Lee SM, Kim HJ, Ha YJ, Park YN, Lee SK, Park YB, et al. 2012. Targeted chemo-photothermal treatments of rheumatoid arthritis using gold half-shell multifunctional nanoparticles. ACS Nano 7: 50-57.
  8. Hemmati S, Schmidt TJ, Fuss E. 2007. (+)-Pinoresinol/(-)-lariciresinol reductase from Linum perenne Himmelszelt involved in the biosynthesis of justicidin B. FEBS Lett. 581: 603-610. https://doi.org/10.1016/j.febslet.2007.01.018
  9. Hano C, Martin I, Fliniaux O, Legrand B, Gutierrez L, Arroo R, et al. 2006. Pinoresinol-lariciresinol reductase gene expression and secoisolariciresinol diglucoside accumulation in developing flax (Linum usitatissimum) seeds. Planta 224: 1291-1301. https://doi.org/10.1007/s00425-006-0308-y
  10. Renouard S, Tribalatc M-A, Lamblin F, Mongelard G, Fliniaux O, Corbin C, et al. 2014. RNAi-mediated pinoresinol lariciresinol reductase gene silencing in flax (Linum usitatissimum L.) seed coat: consequences on lignans and neolignans accumulation. J. Plant Physiol. 171: 1372-1377. https://doi.org/10.1016/j.jplph.2014.06.005
  11. Wang PC, Ran XH, Luo HR, Ma QY, Liu YQ, Zhou J, et al. 2013. Phenolic compounds from the roots of Valeriana officinalis var. latifolia. J. Braz. Chem. Soc. 24: 1544-1548.
  12. Wang Q, Wang C, Zuo Y, Wang Z, Yang B, Kuang H. 2012. Compounds from the roots and rhizomes of Valeriana amurensis protect against neurotoxicity in PC12 cells. Molecules 17: 15013-15021. https://doi.org/10.3390/molecules171215013
  13. Liu WJ, Wang LB. 2010. The lignans from Daphne giraldii Nitsche. Chinese J. Med. Chem. 4: 014.
  14. Dong X, Yang C, Xu G, Cao S, Fu J, Lin L, et al. 2016. Chemical constituents from Daphne giraldii Nitsche and their contents simultaneous determination by HPLC. Evid. Based Complement. Alternat. Med. 2016: 9492368.
  15. Wang JL, Liu EW, Zhang Y, Wang T, Han LF, Gao XM. 2012. Validation of a HPLC-tandem MS/MS method for pharmacokinetics study of (+)-pinoresinol-di-${\beta}$-D-glucopyranoside from Eucommia ulmoides Oliv extract in rats' plasma. J. Ethnopharmacol. 139: 337-342. https://doi.org/10.1016/j.jep.2011.10.037
  16. Liu E, Han L, Wang J, He W, Shang H, Gao X, et al. 2012. Eucommia ulmoides bark protects against renal injury in cadmium-challenged rats. J. Med. Food 15: 307-314. https://doi.org/10.1089/jmf.2011.1756
  17. Nam JW, Kim SY, Yoon T, Lee YJ, Kil YS, Lee YS, et al. 2013. Heat shock factor 1 inducers from the bark of Eucommia ulmoides as cytoprotective agents. Chem. Biodivers. 10: 1322-1327. https://doi.org/10.1002/cbdv.201200401
  18. Huang RH, Xiang Y, Liu XZ, Zhang Y, Hu Z, Wang DC. 2002. Two novel antifungal peptides distinct with a fivedisulfide motif from the bark of Eucommia ulmoides Oliv. FEBS Lett. 521: 87-90. https://doi.org/10.1016/S0014-5793(02)02829-6
  19. Vermes B, Seligmann O, Wagner H. 1991. Synthesis of biologically active tetrahydro-furofuranlignan-(syringin, pinoresinol)-mono-and bis-glucosides. Phytochemistry 30: 3087-3089. https://doi.org/10.1016/S0031-9422(00)98258-X
  20. Jeong EJ, Seo H, Yang H, Kim J, Sung SH, Kim YC. 2012. Anti-inflammatory phenolics isolated from Juniperus rigida leaves and twigs in lipopolysaccharide-stimulated RAW264. 7 macrophage cells. J. Enzyme Inhib. Med. Chem. 27: 875-879. https://doi.org/10.3109/14756366.2011.625025
  21. Munin A, Edwards-Levy F. 2011. Encapsulation of natural polyphenolic compounds: a review. Pharmaceutics 3: 793-829. https://doi.org/10.3390/pharmaceutics3040793
  22. Tschaplinski TJ, Standaert RF, Engle NL, Martin MZ, Sangha AK, Parks JM, et al. 2012. Down-regulation of the caffeic acid O-methyltransferase gene in switchgrass reveals a novel monolignol analog. Biotechnol. Biofuels 5: 1. https://doi.org/10.1186/1754-6834-5-1
  23. Kao TT, Lin CC, Shia KS. 2015. The total synthesis of retrojusticidin B, justicidin E, and helioxanthin. J. Org. Chem. 80: 6708-6714. https://doi.org/10.1021/acs.joc.5b00866
  24. Shi J, Liu C, Liu L, Yang B, Zhang Y. 2012. Structure identification and fermentation characteristics of pinoresinol diglucoside produced by Phomopsis sp. isolated from Eucommia ulmoides Oliv. Appl. Microbiol. Biotechnol. 93: 1475-1483. https://doi.org/10.1007/s00253-011-3613-8
  25. Zhang Y, Shi J, Gao Z, Yangwu R, Jiang H, Che J, et al. 2015. Production of pinoresinol diglucoside, pinoresinol monoglucoside, and pinoresinol by Phomopsis sp. XP-8 using mung bean and its major components. Appl. Microbiol. Biotechnol. 99: 4629-4643. https://doi.org/10.1007/s00253-015-6491-7
  26. Zhang Y, Shi J, Gao Z, Che J, Shao D, Liu Y. 2016. Comparison of pinoresinol diglucoside production by Phomopsis sp. XP-8 in different media and the characterisation and product profiles of the cultivation in mung bean. J. Sci. Food Agric. 96: 4015-4025. https://doi.org/10.1002/jsfa.7593
  27. Wang W, Shi J, Yang B. 2008. Optimization of conditions for production of pinoresinol diglucosideby a strain of Phoma sp. Trans. Chin. Soc. Agric. Eng. 24: 287-290.
  28. Liu G, Xiao X, Jiang H, Mei C, Ding Y. 2013. Detection of pH variable in solid-state fermentation process by FT-NIR spectroscopy and BP-Adaboost. Jiangsu Daxue Xuebao 34: 574-578.
  29. Wang L, Meselhy MR, Li Y, QIN G-W, Hattori M. 2000. Human intestinal bacteria capable of transforming secoisolariciresinol diglucoside to mammalian lignans, enterodiol and enterolactone. Chem. Pharm. Bull. 48: 1606-1610. https://doi.org/10.1248/cpb.48.1606
  30. Heinonen S, Nurmi T, Liukkonen K, Poutanen K, Wahala K, Deyama T, et al. 2001. In vitro metabolism of plant lignans: new precursors of mammalian lignans enterolactone and enterodiol. J. Agric. Food Chem. 49: 3178-3186. https://doi.org/10.1021/jf010038a
  31. Xie LH, Ahn EM, Akao T, Abdel-Hafez AAM, Nakamura N, Hattori M. 2003. Transformation of arctiin to estrogenic and antiestrogenic substances by human intestinal bacteria. Chem. Pharm. Bull. 51: 378-384. https://doi.org/10.1248/cpb.51.378
  32. Zhao J, Shan T, Mou Y, Zhou L. 2011. Plant-derived bioactive compounds produced by endophytic fungi. Mini Rev. Med. Chem. 11: 159-168. https://doi.org/10.2174/138955711794519492
  33. Grishko VV, Tarasova EV, Ivshina IB. 2013. Biotransformation of betulin to betulone by growing and resting cells of the actinobacterium Rhodococcus rhodochrous IEGM 66. Process Biochem. 48: 1640-1644. https://doi.org/10.1016/j.procbio.2013.08.012
  34. Fan L, Dong Y, Xu T, Zhang H, Chen Q. 2013. Gastrodin production from p-2-hydroxybenzyl alcohol through biotransformation by cultured cells of Aspergillus foetidus and Penicillium cyclopium. Appl. Biochem. Biotechnol. 170: 138-148. https://doi.org/10.1007/s12010-013-0166-6
  35. Mikhailova R, Sapunova L, Lobanok A, Yasenko M, Shishko ZF. 2000. Isoelectrophoretic characterization of extracellular polygalacturonases of various Aspergillus alliaceus strains. Microbiology 69: 162-166. https://doi.org/10.1007/BF02756192
  36. Fan Y, Yu Y, Jia X, Chen X, Shen Y. 2013. Cloning, expression and medium optimization of validamycin glycosyltransferase from Streptomyces hygroscopicus var. jinggangensis for the biotransformation of validoxylamine A to produce validamycin A using free resting cells. Bioresour. Technol. 131: 13-20. https://doi.org/10.1016/j.biortech.2012.12.021
  37. Satake H, Ono E, Murata J. 2013. Recent advances in the metabolic engineering of lignan biosynthesis pathways for the production of transgenic plant-based foods and supplements. J. Agric. Food Chem. 61: 11721-11729. https://doi.org/10.1021/jf4007104
  38. Yang Y, Jin Z, Jin Q, Dong M. 2015. Isolation and fatty acid analysis of lipid-producing endophytic fungi from wild Chinese Torreya grandis. Microbiology 84: 710-716. https://doi.org/10.1134/S0026261715050173
  39. Singhania RR, Patel AK, Soccol CR, Pandey A. 2009. Recent advances in solid-state fermentation. Biochem. Eng. J. 44: 13-18. https://doi.org/10.1016/j.bej.2008.10.019
  40. Li Y, Peng X, Chen H. 2013. Comparative characterization of proteins secreted by Neurospora sitophila in solid-state and submerged fermentation. J. Biosci. Bioeng. 116: 493-498. https://doi.org/10.1016/j.jbiosc.2013.04.001
  41. Pandey A, Selvakumar P, Soccol CR, Nigam P. 1999. Solidstate fermentation for the production of industrial enzymes. Curr. Sci. 77: 149-162.
  42. Singhania RR, Sukumaran RK, Patel AK, Larroche C, Pandey A. 2010. Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme Microb. Technol. 46: 541-549. https://doi.org/10.1016/j.enzmictec.2010.03.010
  43. Tobimatsu Y, Davidson CL, Grabber JH, Ralph J. 2011. Fluorescence-tagged monolignols: synthesis, and application to studying in vitro lignification. Biomacromolecules 12: 1752-1761. https://doi.org/10.1021/bm200136x
  44. Liu C, Shi J, Zhou X, Yang B, Dou X. 2011. Isolation, identification and growth conditions of endophytic fungi of Eucommia ulmoides Oliv. for production of PDG. J. Northwest A. F. Univ. 39: 203-209.
  45. Feng S, Gan Z, Zhai X, Fu P, Sun W. 2006. Content comparison of pinoresinol diglucoside in original and reborn bark of Eucommia ulmoides. J. Chin. Med. Mater. 29: 792-794.
  46. Yao LN, Su YF, Yin ZY, Qin N, Li TX, Si CL, et al. 2010. A new phenolic glucoside and flavonoids from the bark of Eucommia ulmoides Oliv. Holzforschung 64: 571-575.
  47. Golubev W, Kulakovskaya T, Shashkov A, Kulakovskaya E, Golubev N. 2008. Antifungal cellobiose lipid secreted by the epiphytic yeast Pseudozyma graminicola. Microbiology 77: 171-175. https://doi.org/10.1134/S0026261708020082
  48. Cantrell C, Schrader K, Mamonov L, Sitpaeva G, Kustova T, Dunbar C, et al. 2005. Isolation and identification of antifungal and antialgal alkaloids from Haplophyllum sieversii. J. Agric. Food Chem. 53: 7741-7748. https://doi.org/10.1021/jf051478v
  49. Qi F, Jing T, Zhan Y. 2012. Characterization of endophytic fungi from Acer ginnala Maxim. in an artificial plantation: media effect and tissue-dependent variation. PLoS One 7: e46785. https://doi.org/10.1371/journal.pone.0046785
  50. Zhang Y, Shi J, Liu L, Gao Z, Che J, Shao D, Liu Y. 2015. Bioconversion of pinoresinol diglucoside and pinoresinol from substrates in the phenylpropanoid pathway by resting cells of Phomopsis sp. XP-8. PLoS One 10: e0137066. https://doi.org/10.1371/journal.pone.0137066