References
- Newman D J, C ragg GM. 2012. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod. 75: 311-335. https://doi.org/10.1021/np200906s
- Zhu F, Qin C, Tao L, Liu X, Shi Z, Ma X, et al. 2011. Clustered patterns of species origins of nature-derived drugs and clues for future bioprospecting. Proc. Natl. Acad. Sci. USA 108: 12943-12948. https://doi.org/10.1073/pnas.1107336108
- Austin B. 1989. Novel pharmaceutical compounds from marine bacteria. J. Appl. Bacteriol. 67: 461-470. https://doi.org/10.1111/j.1365-2672.1989.tb02517.x
- Darabpour E, Roayaei AM, Motamedi H, Ronagh M. 2011. Isolation of a broad spectrum antibiotic producer bacterium, Pseudoalteromonas piscicida PG-02, from the Persian Gulf. Bangladesh J. Pharmacol. 6: 74-83.
- Jensen P, Fenical W. 1996. Marine bacterial diversity as a resource for novel microbial products. J. Ind. Microbiol. Biotechnol. 17: 346-351. https://doi.org/10.1007/BF01574765
- Vigneshwari R, Sally RA, Jayapradha R. 2015. Cocultivation-powerful tool for the production of secondary metabolites. J. Chem. Pharm. Res. 7: 481-485.
- Valgas C, Souza S, Smânia E, Smania JA. 2007. Screening methods to determine antibacterial activity of natural products. Braz. J. Microbiol. 38: 369-380. https://doi.org/10.1590/S1517-83822007000200034
- Balouiri M, Sadiki M, Ibnsouda S. 2016. Methods for in vitro evaluating antimicrobial activity: a review. J. Pharm. Anal. 6: 71-79. https://doi.org/10.1016/j.jpha.2015.11.005
- Pikkemaat M. 2009. Microbial screening methods for detection of antibiotic residues in slaughter animals. Anal. Bioanal. Chem. 395: 893-905. https://doi.org/10.1007/s00216-009-2841-6
- Zhang J, Liu X, Liu S. 2009. Agrococcus terreus sp. nov. and Micrococcus terreus sp. nov., isolated from forest soil. Int. J. Syst. Evol. Microbiol. 60: 1897-1903.
- Ivanova E, Alexeeva Y, Zhukova N, Gorshkova N, Buljan V, Nicolau D, et al. 2004. Bacillus algicola sp. nov., a novel filamentous organism isolated from brown alga Fucus evanescens. Syst. Appl. Microbiol. 27: 301-307. https://doi.org/10.1078/0723-2020-00269
- Asker D, Beppu T, Ueda K. 2007. Mesoflavibacter zeaxanthinifaciens gen. nov., sp. nov., a novel zeaxanthin-producing marine bacterium of the family Flavobacteriaceae. Syst. Appl. Microbiol. 30: 291-296. https://doi.org/10.1016/j.syapm.2006.12.003
- Romanenko L. 2003. Pseudoalteromonas agarivorans sp. nov., a novel marine agarolytic bacterium. Int. J. Syst. Evol. Microbiol. 53: 125-131. https://doi.org/10.1099/ijs.0.02234-0
- Shao R, Lai Q, Liu X, Sun F, Du Y, Li G, et al. 2013. Zunongwangia atlantica sp. nov., isolated from deep-sea water. Int. J. Syst. Evol. Microbiol. 64: 16-20.
- Bernbom N, Ng Y, Olsen S, Gram L. 2013. Pseudoalteromonas spp. serve as initial bacterial attractants in mesocosms of coastal waters but have subsequent antifouling capacity in mesocosms and when embedded in paint. Appl. Environ. Microbiol. 79: 6885-6893. https://doi.org/10.1128/AEM.01987-13
- Anwar M, Choi S. 2014. Gram-negative marine bacteria: structural features of lipopolysaccharides and their relevance for economically important diseases. Mar. Drugs 12: 2485-2514. https://doi.org/10.3390/md12052485
- Jung M, Kim J, Paek W, Lim J, Lee H, Kim P, et al. 2011. Bacillus manliponensis sp. nov., a new member of the Bacillus cereus group isolated from foreshore tidal flat sediment. J. Microbiol. 49: 1027-1032. https://doi.org/10.1007/s12275-011-1049-6
- Roberts M, Nakamura L, Cohan F. 1996. Bacillus vallismortis sp. nov., a close relative of Bacillus subtilis, isolated from soil in Death Valley, California. Int. J. Syst. Evol. Microbiol. 46: 470-475.
- Poli A, Nicolaus B, Denizci A, Yavuzturk B, Kazan D. 2012. Halomonas smyrnensis sp. nov., a moderately halophilic, exopolysaccharide-producing bacterium. Int. J. Syst. Evol. Microbiol. 63: 10-18.
- Kaneko M, Iwashita M. 1987. Antimicrobial susceptibility of Vibrio parahaemolyticus and Vibrio alginolyticus isolated from human feces and foods. Kansenshogaku Zasshi 61: 9-16. https://doi.org/10.11150/kansenshogakuzasshi1970.61.9
- Bottone E. 2010. Bacillus cereus, a volatile human pathogen. Clin. Microbiol. Rev. 23: 382-398. https://doi.org/10.1128/CMR.00073-09
- Ushakova N, Nekrasov R, Meleshko N, Laptev G, Il'ina L, Kozlova A, et al. 2013. Effect of Bacillus subtilis on the rumen microbial community and its components exhibiting high correlation coefficients with the host nutrition, growth, and development. Microbiology 82: 475-481. https://doi.org/10.1134/S0026261713040127
- Stevens D, Hamilton J, Johnson N, Kim K, Lee J. 2009. Halomonas, a newly recognized human pathogen causing infections and contamination in a dialysis center. Medicine 88: 244-249. https://doi.org/10.1097/MD.0b013e3181aede29
- Hubalek Z. 2003. Protectants used in the cryopreservation of microorganisms. Cryobiology 46: 205-229. https://doi.org/10.1016/S0011-2240(03)00046-4
- Clinical and Laboratory Standards Institute (CLSI). 2015. Performance standard for antimicrobial susceptibility testing; twenty-second informational supplement, pp. 146-156. Clinical and Laboratory Standards Institute, Wayne, PA, USA.
- Shank EA, Kolter R. 2009. New developments in microbial interspecies signaling. Curr. Opin. Microbiol. 12: 205-214. https://doi.org/10.1016/j.mib.2009.01.003
- Armstrong E, Yan L, Boyd K, Wright P, Burgess J. 2001. The symbiotic role of marine microbes on living surfaces. Hydrobiologia 461: 37-40. https://doi.org/10.1023/A:1012756913566
- Sanchez J, Kouznetsov V. 2010. Antimycobacterial susceptibility testing methods for natural products research. Braz. J. Microbiol. 41: 270-277 https://doi.org/10.1590/S1517-83822010000200001
- Pauli G, Case R, Inui T, Wang Y, Cho S, Fischer N, et al. 2005. New perspectives on natural products in TB drug research. Life Sci. 78: 485-494. https://doi.org/10.1016/j.lfs.2005.09.004
- Balouiri M, Sadiki M, Ibnsouda S. 2016. Methods for in vitro evaluating antimicrobial activity: a review. J. Pharm. Anal. 6: 71-79. https://doi.org/10.1016/j.jpha.2015.11.005
- Gibb A. 1999. Plates are better than broth for recovery of fastidious organisms from some specimen material. J. Clin. Microbiol. 37: 875.
- Dheilly A, Soum-Soutera E, Klein G, Bazire A, Compere C, Haras D, et al. 2010. Antibiofilm activity of the marine bacterium Pseudoalteromonas sp. strain 3J6. Appl. Environ. Microbiol. 76: 3452-3461. https://doi.org/10.1128/AEM.02632-09
- Wilson G, Raftos D, Nair S. 2011. Antimicrobial activity of surface attached marine bacteria in biofilms. Microbiol. Res. 166: 437-448. https://doi.org/10.1016/j.micres.2010.08.003
- Goers L, Freemont P, Polizzi K. 2014. Co-culture systems and technologies: taking synthetic biology to the next level. J. R. Soc. Interface 11: 20140065. https://doi.org/10.1098/rsif.2014.0065
- Fukuda T, Tsutsumi K, Morita H. 2008. Antibiotic activity in co-culture: influence of Bacillus subtilis on the antibiotic activity of Rhizopus peka. Japan J. Food Eng. 9: 99-106.
- Dopazo C, Lemos M, Lodeiros C, Bolinches J, Barja J, Toranzo A. 1988. Inhibitory activity of antibiotic-producing marine bacteria against fish pathogens. J. Appl. Bacteriol. 65: 97-101. https://doi.org/10.1111/j.1365-2672.1988.tb01497.x
- Yu M, Wang J, Tang K, Shi X, Wang S, Zhu W, Zhang X. 2011. Purification and characterization of antibacterial compounds of Pseudoalteromonas flavipulchra JG1. Microbiology 158: 835-842.
- Gauthier G, Gauthier M, Christen R. 1995. Phylogenetic analysis of the genera Alteromonas, Shewanella, and Moritella using genes coding for small-subunit rRNA sequences and division of the genus Alteromonas into two genera, Alteromonas (Emended) and Pseudoalteromonas gen. nov., and proposal of twelve new species combinations. Int. J. Syst. Bacteriol. 45: 755-761. https://doi.org/10.1099/00207713-45-4-755
- Bowman J. 2007. Bioactive compound synthetic capacity and ecological significance of marine bacterial genus Pseudoalteromonas. Mar. Drugs 5: 220-241. https://doi.org/10.3390/md504220
- Jin G, Wang S, Yu M, Yan S, Zhang X. 2010. Identification of a marine antagonistic strain JG1 and establishment of a polymerase chain reaction detection technique based on the gyrB gene. Aquac. Res. 41: 1867-1874. https://doi.org/10.1111/j.1365-2109.2010.02591.x
- Hayashida-Soiza G, Uchida A, Mori N, Kuwahara Y, Ishida Y. 2008. Purification and characterization of antibacterial substances produced by a marine bacterium Pseudoalteromonas haloplanktis strain. J. Appl. Microbiol. 105: 1672-1677. https://doi.org/10.1111/j.1365-2672.2008.03878.x
- Offret C, Desriac F, Le Chevalier P, Mounier J, Jegou C, Fleury Y. 2016. Spotlight on antimicrobial metabolites from the marine bacteria Pseudoalteromonas: chemodiversity and ecological significance. Mar. Drugs 14: 129. https://doi.org/10.3390/md14070129
Cited by
- Deep Hypersaline Anoxic Basins as Untapped Reservoir of Polyextremophilic Prokaryotes of Biotechnological Interest vol.18, pp.2, 2017, https://doi.org/10.3390/md18020091
- Antimicrobial Activities of Sponge-Derived Microorganisms from Coastal Waters of Central Vietnam vol.8, pp.8, 2020, https://doi.org/10.3390/jmse8080594
- Evaluation of the Antibacterial Activity of Spathiphyllum wallisii Extracts Against Human Pathogenic Bacteria vol.23, pp.11, 2017, https://doi.org/10.3923/pjbs.2020.1436.1441
- A New Potential Source of Anti-pathogenic Bacterial Substances from Zamioculcas zamiifolia (Lodd.) Engl. Extracts vol.24, pp.2, 2017, https://doi.org/10.3923/pjbs.2021.235.240
- Classification of a Violacein-Producing Psychrophilic Group of Isolates Associated with Freshwater in Antarctica and Description of Rugamonas violacea sp. nov. vol.9, pp.1, 2021, https://doi.org/10.1128/spectrum.00452-21