Browse > Article
http://dx.doi.org/10.4014/jmb.1703.03056

Bioconversion of Pinoresinol Diglucoside from Glucose Using Resting and Freeze-Dried Phomopsis sp. XP-8 Cells  

Gao, Zhenhong (College of Food Science and Engineering, Northwest A & F University)
Rajoka, Muhammad Shahid Riaz (Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University)
Zhu, Jing (Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University)
Zhang, Zhiwei (College of Food Science and Engineering, Qingdao Agriculture University)
Zhang, Yan (College of Food Science and Engineering, Northwest A & F University)
Che, Jinxin (College of Food Science and Engineering, Northwest A & F University)
Xu, Xiaoguang (Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University)
Shi, Junling (Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University)
Publication Information
Journal of Microbiology and Biotechnology / v.27, no.8, 2017 , pp. 1428-1440 More about this Journal
Abstract
Phomopsis sp. XP-8 (an endophytic fungus) was previously found to produce pinoresinol diglucoside (PDG), a major antihypertensive compound of Tu-Chung (the bark of Eucommia ulmoides Oliv.), which is widely used in Chinese traditional medicines. In the present study, two bioconversion systems were developed for the production of PDG in Tris-HCl buffer containing glucose and Phomopsis sp. XP-8 cells (both resting and freeze-dried). When other factors remained unchanged, the bioconversion time, glucose concentration, cell ages, cell dosage, pH, temperature, and stirring speed influenced PDG production in a similar and decreasing manner after an initial increase with increasing levels for each factor. Considering the simultaneous change of various factors, the optimal conditions for PDG production were established as 70 g/l cells (8-day-old), 14 g/l glucose, $28^{\circ}C$, pH 7.5, and 180 rpm for systems employing resting cells, and 3.87 g/l cells, 14.67 g/l glucose, $28^{\circ}C$, pH 7.5, and 180 rpm for systems employing freeze-dried cells. The systems employing freeze-dried cells showed lower peak PDG production ($110.28{\mu}g/l$), but at a much shorter time (12.65 h) compared with resting cells (23.62 mg/l, 91.5 h). The specific PDG production levels were 1.92 and $24{\mu}g$ per gram cells per gram glucose for freeze-dried cells and resting cells, respectively. Both systems indicated a new and potentially efficient way to produce PDG independent of microbial cell growth.
Keywords
Bioconversion; pinoresinol diglucoside; resting cells; freeze-dried cells; Phomopsis sp.;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Shi J, Liu C, Liu L, Yang B, Zhang Y. 2012. Structure identification and fermentation characteristics of pinoresinol diglucoside produced by Phomopsis sp. isolated from Eucommia ulmoides Oliv. Appl. Microbiol. Biotechnol. 93: 1475-1483.   DOI
2 Zhang Y, Shi J, Gao Z, Yangwu R, Jiang H, Che J, et al. 2015. Production of pinoresinol diglucoside, pinoresinol monoglucoside, and pinoresinol by Phomopsis sp. XP-8 using mung bean and its major components. Appl. Microbiol. Biotechnol. 99: 4629-4643.   DOI
3 Zhang Y, Shi J, Gao Z, Che J, Shao D, Liu Y. 2016. Comparison of pinoresinol diglucoside production by Phomopsis sp. XP-8 in different media and the characterisation and product profiles of the cultivation in mung bean. J. Sci. Food Agric. 96: 4015-4025.   DOI
4 Wang W, Shi J, Yang B. 2008. Optimization of conditions for production of pinoresinol diglucosideby a strain of Phoma sp. Trans. Chin. Soc. Agric. Eng. 24: 287-290.
5 Liu G, Xiao X, Jiang H, Mei C, Ding Y. 2013. Detection of pH variable in solid-state fermentation process by FT-NIR spectroscopy and BP-Adaboost. Jiangsu Daxue Xuebao 34: 574-578.
6 Wang L, Meselhy MR, Li Y, QIN G-W, Hattori M. 2000. Human intestinal bacteria capable of transforming secoisolariciresinol diglucoside to mammalian lignans, enterodiol and enterolactone. Chem. Pharm. Bull. 48: 1606-1610.   DOI
7 Heinonen S, Nurmi T, Liukkonen K, Poutanen K, Wahala K, Deyama T, et al. 2001. In vitro metabolism of plant lignans: new precursors of mammalian lignans enterolactone and enterodiol. J. Agric. Food Chem. 49: 3178-3186.   DOI
8 Xie LH, Ahn EM, Akao T, Abdel-Hafez AAM, Nakamura N, Hattori M. 2003. Transformation of arctiin to estrogenic and antiestrogenic substances by human intestinal bacteria. Chem. Pharm. Bull. 51: 378-384.   DOI
9 Sih CJ, Ravikumar P, Huang FC, Buckner C, Whitlock JH. 1976. Isolation and synthesis of pinoresinol diglucoside, a major antihypertensive principle of Tu-Chung (Eucommia ulmoides, Oliver). J. Am. Chem. Soc. 98: 5412-5413.   DOI
10 Luo LF, Wu WH, Zhou YJ, Yan J, Yang GP, Ouyang DS. 2010. Antihypertensive effect of Eucommia ulmoides Oliv. extracts in spontaneously hypertensive rats. J. Ethnopharmacol. 129: 238-243.   DOI
11 Xie LH, Akao T, Hamasaki K, Deyama T, Hattori M. 2003. Biotransformation of pinoresinol diglucoside to mammalian lignans by human intestinal microflora, and isolation of Enterococcus faecalis strain PDG-1 responsible for the transformation of (+)-pinoresinol to (+)-lariciresinol. Chem. Pharm. Bull. 51: 508-515.   DOI
12 Wang CZ, Ma XQ, Yang DH, Guo ZR, Liu GR, Zhao GX, et al. 2010. Production of enterodiol from defatted flaxseeds through biotransformation by human intestinal bacteria. BMC Microbiol. 10: 115.   DOI
13 Lee SY, Kwon HK, Lee SM. 2011. SHINBARO, a new herbal medicine with multifunctional mechanism for joint disease: first therapeutic application for the treatment of osteoarthritis. Arch. Pharm. Res. 34: 1773-1777.   DOI
14 Mikhailova R, Sapunova L, Lobanok A, Yasenko M, Shishko ZF. 2000. Isoelectrophoretic characterization of extracellular polygalacturonases of various Aspergillus alliaceus strains. Microbiology 69: 162-166.   DOI
15 Zhao J, Shan T, Mou Y, Zhou L. 2011. Plant-derived bioactive compounds produced by endophytic fungi. Mini Rev. Med. Chem. 11: 159-168.   DOI
16 Grishko VV, Tarasova EV, Ivshina IB. 2013. Biotransformation of betulin to betulone by growing and resting cells of the actinobacterium Rhodococcus rhodochrous IEGM 66. Process Biochem. 48: 1640-1644.   DOI
17 Fan L, Dong Y, Xu T, Zhang H, Chen Q. 2013. Gastrodin production from p-2-hydroxybenzyl alcohol through biotransformation by cultured cells of Aspergillus foetidus and Penicillium cyclopium. Appl. Biochem. Biotechnol. 170: 138-148.   DOI
18 Fan Y, Yu Y, Jia X, Chen X, Shen Y. 2013. Cloning, expression and medium optimization of validamycin glycosyltransferase from Streptomyces hygroscopicus var. jinggangensis for the biotransformation of validoxylamine A to produce validamycin A using free resting cells. Bioresour. Technol. 131: 13-20.   DOI
19 Satake H, Ono E, Murata J. 2013. Recent advances in the metabolic engineering of lignan biosynthesis pathways for the production of transgenic plant-based foods and supplements. J. Agric. Food Chem. 61: 11721-11729.   DOI
20 Yang Y, Jin Z, Jin Q, Dong M. 2015. Isolation and fatty acid analysis of lipid-producing endophytic fungi from wild Chinese Torreya grandis. Microbiology 84: 710-716.   DOI
21 Singhania RR, Patel AK, Soccol CR, Pandey A. 2009. Recent advances in solid-state fermentation. Biochem. Eng. J. 44: 13-18.   DOI
22 Renouard S, Tribalatc M-A, Lamblin F, Mongelard G, Fliniaux O, Corbin C, et al. 2014. RNAi-mediated pinoresinol lariciresinol reductase gene silencing in flax (Linum usitatissimum L.) seed coat: consequences on lignans and neolignans accumulation. J. Plant Physiol. 171: 1372-1377.   DOI
23 Li Y, Peng X, Chen H. 2013. Comparative characterization of proteins secreted by Neurospora sitophila in solid-state and submerged fermentation. J. Biosci. Bioeng. 116: 493-498.   DOI
24 Lee AS, Ellman MB, Yan D, Kroin JS, Cole BJ, van Wijnen AJ, et al. 2013. A current review of molecular mechanisms regarding osteoarthritis and pain. Gene 527: 440-447.   DOI
25 Lee SM, Kim HJ, Ha YJ, Park YN, Lee SK, Park YB, et al. 2012. Targeted chemo-photothermal treatments of rheumatoid arthritis using gold half-shell multifunctional nanoparticles. ACS Nano 7: 50-57.
26 Hemmati S, Schmidt TJ, Fuss E. 2007. (+)-Pinoresinol/(-)-lariciresinol reductase from Linum perenne Himmelszelt involved in the biosynthesis of justicidin B. FEBS Lett. 581: 603-610.   DOI
27 Hano C, Martin I, Fliniaux O, Legrand B, Gutierrez L, Arroo R, et al. 2006. Pinoresinol-lariciresinol reductase gene expression and secoisolariciresinol diglucoside accumulation in developing flax (Linum usitatissimum) seeds. Planta 224: 1291-1301.   DOI
28 Wang PC, Ran XH, Luo HR, Ma QY, Liu YQ, Zhou J, et al. 2013. Phenolic compounds from the roots of Valeriana officinalis var. latifolia. J. Braz. Chem. Soc. 24: 1544-1548.
29 Wang Q, Wang C, Zuo Y, Wang Z, Yang B, Kuang H. 2012. Compounds from the roots and rhizomes of Valeriana amurensis protect against neurotoxicity in PC12 cells. Molecules 17: 15013-15021.   DOI
30 Liu WJ, Wang LB. 2010. The lignans from Daphne giraldii Nitsche. Chinese J. Med. Chem. 4: 014.
31 Dong X, Yang C, Xu G, Cao S, Fu J, Lin L, et al. 2016. Chemical constituents from Daphne giraldii Nitsche and their contents simultaneous determination by HPLC. Evid. Based Complement. Alternat. Med. 2016: 9492368.
32 Feng S, Gan Z, Zhai X, Fu P, Sun W. 2006. Content comparison of pinoresinol diglucoside in original and reborn bark of Eucommia ulmoides. J. Chin. Med. Mater. 29: 792-794.
33 Singhania RR, Sukumaran RK, Patel AK, Larroche C, Pandey A. 2010. Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme Microb. Technol. 46: 541-549.   DOI
34 Tobimatsu Y, Davidson CL, Grabber JH, Ralph J. 2011. Fluorescence-tagged monolignols: synthesis, and application to studying in vitro lignification. Biomacromolecules 12: 1752-1761.   DOI
35 Liu C, Shi J, Zhou X, Yang B, Dou X. 2011. Isolation, identification and growth conditions of endophytic fungi of Eucommia ulmoides Oliv. for production of PDG. J. Northwest A. F. Univ. 39: 203-209.
36 Yao LN, Su YF, Yin ZY, Qin N, Li TX, Si CL, et al. 2010. A new phenolic glucoside and flavonoids from the bark of Eucommia ulmoides Oliv. Holzforschung 64: 571-575.
37 Golubev W, Kulakovskaya T, Shashkov A, Kulakovskaya E, Golubev N. 2008. Antifungal cellobiose lipid secreted by the epiphytic yeast Pseudozyma graminicola. Microbiology 77: 171-175.   DOI
38 Pandey A, Selvakumar P, Soccol CR, Nigam P. 1999. Solidstate fermentation for the production of industrial enzymes. Curr. Sci. 77: 149-162.
39 Cantrell C, Schrader K, Mamonov L, Sitpaeva G, Kustova T, Dunbar C, et al. 2005. Isolation and identification of antifungal and antialgal alkaloids from Haplophyllum sieversii. J. Agric. Food Chem. 53: 7741-7748.   DOI
40 Qi F, Jing T, Zhan Y. 2012. Characterization of endophytic fungi from Acer ginnala Maxim. in an artificial plantation: media effect and tissue-dependent variation. PLoS One 7: e46785.   DOI
41 Huang RH, Xiang Y, Liu XZ, Zhang Y, Hu Z, Wang DC. 2002. Two novel antifungal peptides distinct with a fivedisulfide motif from the bark of Eucommia ulmoides Oliv. FEBS Lett. 521: 87-90.   DOI
42 Wang JL, Liu EW, Zhang Y, Wang T, Han LF, Gao XM. 2012. Validation of a HPLC-tandem MS/MS method for pharmacokinetics study of (+)-pinoresinol-di-${\beta}$-D-glucopyranoside from Eucommia ulmoides Oliv extract in rats' plasma. J. Ethnopharmacol. 139: 337-342.   DOI
43 Liu E, Han L, Wang J, He W, Shang H, Gao X, et al. 2012. Eucommia ulmoides bark protects against renal injury in cadmium-challenged rats. J. Med. Food 15: 307-314.   DOI
44 Nam JW, Kim SY, Yoon T, Lee YJ, Kil YS, Lee YS, et al. 2013. Heat shock factor 1 inducers from the bark of Eucommia ulmoides as cytoprotective agents. Chem. Biodivers. 10: 1322-1327.   DOI
45 Vermes B, Seligmann O, Wagner H. 1991. Synthesis of biologically active tetrahydro-furofuranlignan-(syringin, pinoresinol)-mono-and bis-glucosides. Phytochemistry 30: 3087-3089.   DOI
46 Kao TT, Lin CC, Shia KS. 2015. The total synthesis of retrojusticidin B, justicidin E, and helioxanthin. J. Org. Chem. 80: 6708-6714.   DOI
47 Jeong EJ, Seo H, Yang H, Kim J, Sung SH, Kim YC. 2012. Anti-inflammatory phenolics isolated from Juniperus rigida leaves and twigs in lipopolysaccharide-stimulated RAW264. 7 macrophage cells. J. Enzyme Inhib. Med. Chem. 27: 875-879.   DOI
48 Munin A, Edwards-Levy F. 2011. Encapsulation of natural polyphenolic compounds: a review. Pharmaceutics 3: 793-829.   DOI
49 Tschaplinski TJ, Standaert RF, Engle NL, Martin MZ, Sangha AK, Parks JM, et al. 2012. Down-regulation of the caffeic acid O-methyltransferase gene in switchgrass reveals a novel monolignol analog. Biotechnol. Biofuels 5: 1.   DOI
50 Zhang Y, Shi J, Liu L, Gao Z, Che J, Shao D, Liu Y. 2015. Bioconversion of pinoresinol diglucoside and pinoresinol from substrates in the phenylpropanoid pathway by resting cells of Phomopsis sp. XP-8. PLoS One 10: e0137066.   DOI