DOI QR코드

DOI QR Code

Microstructure Refinement and Strengthening Mechanisms of a 9Cr Oxide Dispersion Strengthened Steel by Zirconium Addition

  • Xu, Haijian (Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University) ;
  • Lu, Zheng (Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University) ;
  • Wang, Dongmei (Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University) ;
  • Liu, Chunming (Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University)
  • Published : 2017.02.25

Abstract

To study the effects of zirconium (Zr) addition on the microstructure, hardness and the tensile properties of oxide dispersion strengthened (ODS) ferritic-martensitic steels, two kinds of 9Cr-ODS ferritic-martensitic steels with nominal compositions (wt.%) of $Fe-9Cr-2W-0.3Y_2O_3$ and $Fe-9Cr-2W-0.3Zr-0.3Y_2O_3$ were fabricated by the mechanical alloying (MA) of premixed powders and then consolidated by hot isostatic pressing (HIP) techniques. The experimental results showed that the average grain size decreases with Zr addition. The trigonal ${\delta}$-phase $Y_4Zr_3O_{12}$ oxides and body-centered cubic $Y_2O_3$ oxides are formed in the 9Cr-Zr-ODS steel and 9Cr non-Zr ODS steel, respectively, and the average size of $Y_4Zr_3O_{12}$ particles is much smaller than that of $Y_2O_3$. The dispersion morphology of the oxide particles in 9Cr-Zr-ODS steel is significantly improved and the number density is $1.1{\times}10^{23}/m^3$ with Zr addition. The 9Cr-Zr-ODS steel shows much higher tensile ductility, ultimate tensile strength and Vickers hardness at the same time.

Keywords

References

  1. C. Keller, M.M. Margulies, Z. Hadjem-Hamouche, I. Guillot, Influence of the temperature on the tensile behaviour of a modified 9Cr-1Mo T91 martensitic steel, Mater. Sci. Eng. A 527 (2010) 6758-6764. https://doi.org/10.1016/j.msea.2010.07.021
  2. N. Baluc, J.L. Boutard, S.L. Dudarev, M. Rieth, J. Brito Correia, B. Fournier, J. Henry, F. Legendre, T. Leguey, M. Lewandowska, R. Lindau, E. Marquis, A. Munoz, B. Radiguet, Z. Oksiuta, Review on the EFDA work programme on nano-structured ODS RAF steels, J. Nucl. Mater. 417 (2011) 149-153. https://doi.org/10.1016/j.jnucmat.2010.12.065
  3. Y.F. Li, H. Abe, T. Nagasaka, T. Muroga, M. Kondo, Corrosion behavior of 9Cr-ODS steel in stagnant liquid lithium and lead-lithium at 873 K, J. Nucl. Mater. 443 (2013) 200-206. https://doi.org/10.1016/j.jnucmat.2013.07.026
  4. H.J. Xu, Z. Lu, C.Y. Jia, H. Gao, C.M. Liu, Microstructure and mechanical property of 12Cr oxide dispersion strengthened steel, High Temp. Mater. Proc. 35 (2016) 321-325.
  5. H.Y. Fu, T. Nagasaka, T. Muroga, A. Kimura, J.M. Chen, Microstructural characterization of a diffusion-bonded joint for 9Cr-ODS and JLF-1 reduced activation ferritic/martensitic steels, Fusion Eng. Des. 89 (2014) 1658-1663. https://doi.org/10.1016/j.fusengdes.2014.02.055
  6. Y. Li, T. Nagasaka, T. Muroga, A. Kimura, S. Ukai, High-temperature mechanical properties and microstructure of 9Cr oxide dispersion strengthened steel compared with RAFMs, Fusion Eng. Des. 86 (2011) 2495-2499. https://doi.org/10.1016/j.fusengdes.2011.03.004
  7. E. Gaganidze, J. Aktaa, Assessment of neutron irradiation effects on RAFM steels, Fusion Eng. Des. 88 (2013) 118-128. https://doi.org/10.1016/j.fusengdes.2012.11.020
  8. J.C.H. He, F. Wan, K. Sridharan, T.R. Allen, A. Certain, Y.Q. Wu, Response of 9Cr-ODS steel to proton irradiation at $400^{\circ}C$, J. Nucl. Mater. 452 (2014) 87-94. https://doi.org/10.1016/j.jnucmat.2014.05.004
  9. R. Kasada, N. Toda, K. Yutani, H.S. Cho, H. Kishimoto, A. Kimura, Pre- and post-deformation microstructures of oxide dispersion strengthened ferritic steels, J. Nucl. Mater. 367-370 (2007) 222-228. https://doi.org/10.1016/j.jnucmat.2007.03.141
  10. S. Ohtsuka, S. Ukai, M. Fujiwara, Nano-mesoscopic structural control in 9CrODS ferritic/martensitic steels, J. Nucl. Mater. 351 (2006) 241-246. https://doi.org/10.1016/j.jnucmat.2006.02.006
  11. H.J. Xu, Z. Lu, C.Y. Jia, D.Z. Feng, C.M. Liu, Influence of mechanical alloying time on morphology and properties of 15Cr-ODS steel powders, High Temp. Mater. Proc. 35 (2016) 473-477.
  12. D.T. Hoelzer, J. Bentley, M.A. Sokolov, M.K. Miller, G.R. Odette, M.J. Alinger, Influence of particle dispersions on the high-temperature strength of ferritic alloys, J. Nucl. Mater. 367-370 (2007) 166-172. https://doi.org/10.1016/j.jnucmat.2007.03.151
  13. H.J. Xu, Z. Lu, S. Ukai, N. Oono, C.M. Liu, Effects of annealing temperature on nanoscale particles in oxide dispersion strengthened Fe-15Cr alloy powders with Ti and Zr additions, J. Alloys. Compd. 693 (2017) 177-187. https://doi.org/10.1016/j.jallcom.2016.09.133
  14. K.A. Darling, R.N. Chan, P.Z. Wong, J.E. Semones, R.O. Scattergood, C.C. Koch, Grain-size stabilization in nanocrystalline FeZr alloys, Scr. Mater. 59 (2008) 530-533. https://doi.org/10.1016/j.scriptamat.2008.04.045
  15. P. Dou, A. Kimura, R. Kasada, T. Okuda, M. Inoue, S. Ukai, S. Ohnuki, T. Fujisaw, F. Abe, TEM and HRTEM study of oxide particles in an Al-alloyed high-Cr oxide dispersion strengthened steel with Zr addition, J. Nucl. Mater. 444 (2014) 441-453. https://doi.org/10.1016/j.jnucmat.2013.10.028
  16. J. Isselin, R. Kasada, A. Kimura, Corrosion behaviour of 16% Cr-4%Al and 16%Cr ODS ferritic steels under different metallurgical conditions in a supercritical water environment, Corros. Sci. 52 (2010) 3266-3270. https://doi.org/10.1016/j.corsci.2010.05.043
  17. A. Yabuuchi, M. Maekawa, A. Kawasuso, Influence of oversized elements (Hf, Zr, Ti and Nb) on the thermal stability of vacancies in type 316L stainless steels, J. Nucl. Mater. 430 (2012) 190-193. https://doi.org/10.1016/j.jnucmat.2012.07.005
  18. D. Murali, B.K. Panigrahi, M.C. Valsakumar, S. Chandra, C.S. Sundar, B. Raj, The role of minor alloying elements on the stability and dispersion of yttria nanoclusters in nanostructured ferritic alloys: an ab initio study, J. Nucl. Mater. 403 (2010) 113-116. https://doi.org/10.1016/j.jnucmat.2010.06.008
  19. J.H. Lee, R. Kasada, A. Kimura, T. Okuda, M. Inoue, S. Ukai, S. Ohnuki, T. Fujisawa, F. Abe, Influence of alloy composition and temperature on corrosion behavior of ODS ferritic steels, J. Nucl. Mater. 417 (2011) 1225-1228. https://doi.org/10.1016/j.jnucmat.2010.12.279
  20. D.B. Williams, C.B. Carter, Transmission Electron Microscopy-A Textbook for Materials Science, second edition, Springer, New York, 2009.
  21. D.B. Williams, C.B. Carter, Transmission Electron Microscopy, second edition, Plenum Press, New York and London, 1996.
  22. Y.F. Li, H. Abe, F. Li, Y. Satoh, Y. Matsukawa, T. Matsunaga, T. Muroga, Grain structural characterization of 9Cr-ODS steel aged at 973 K up to 10,000 h by electron backscatter diffraction, J. Nucl. Mater. 455 (2014) 568-572. https://doi.org/10.1016/j.jnucmat.2014.08.047
  23. Z. Lu, R.G. Faulkner, N. Riddle, F.D. Martino, K. Yang, Effect of heat treatment on microstructure and hardness of Eurofer 97, Eurofer ODS and T92 steels, J. Nucl. Mater. 386-388 (2009) 445-448. https://doi.org/10.1016/j.jnucmat.2008.12.152
  24. C.G. Panait, W. Bendick, A. Fuchsmann, A.-F. Gourgues-Lorenon, J. Besson, Study of the microstructure of the Grade 91 steel after more than 100,000 h of creep exposure at $600^{\circ}C$, ISIJ Int. 87 (2010) 326-335.
  25. A. Aghajani, Ch. Somsen, G. Eggeler, On the effect of long-term creep on the microstructure of a 12% chromium tempered martensite ferritic steel, Acta Mater. 57 (2009) 5093-5106. https://doi.org/10.1016/j.actamat.2009.07.010
  26. Y. Uchida, S. Ohnuki, N. Hashimoto, T. Suda, T. Nagai, T. Shibayama, K. Hamada, N. Akasaka, S. Yamashita, S. Ohstuka, T. Yoshitake, Effect of minor alloying element on dispersing nano-particles in ODS steel, Mater. Res. Soc. Symp. Proc. 981 (2007) 107-112.
  27. K.A. Darling, B.K. VanLeeuwen, J.E. Semones, C.C. Koch, R.O. Scattergood, L.J. Kecskes, S.N. Mathaudhu, Stabilized nanocrystalline iron-based alloys: guiding efforts in alloy selection, Mater. Sci. Eng. A. 528 (2011) 4365-4371. https://doi.org/10.1016/j.msea.2011.02.080
  28. P.M. Kelly, Progress report on recent advances in physical metallurgy: (C) the quantitative relationship between microstructure and properties in two-phase alloys, Int. Metals Rev. 18 (1973) 31-36. https://doi.org/10.1179/imr.1973.18.1.31
  29. C. Hin, B.D. Wirth, Formation of $Y_2O_3$ nanoclusters in nanostructured ferritic alloys: modeling of precipitation kinetics and yield strength, J. Nucl. Mater. 402 (2010) 30-37. https://doi.org/10.1016/j.jnucmat.2010.04.020
  30. A. Steckmeyer, M. Praud, B. Fournier, J. Malaplate, J. Garnier, J.L. Bechade, I. Tournie, A. Tancray, A. Bougault, P. Bonnaillie, Tensile properties and deformation mechanisms of a 14Cr ODS ferritic steel, J. Nucl. Mater. 405 (2010) 95-100. https://doi.org/10.1016/j.jnucmat.2010.07.027
  31. S. Ukai, S. Ohtsuka, T. Kaito, H. Sakasegawa, N. Chikata, S. Hayashi, S. Ohnuki, High-temperature strength characterization of advanced 9Cr-ODS ferritic steels, J. Nucl. Mater. 510-511 (2009) 115-120.
  32. J.W. Martin, Micromechanisms in Particle-Hardened Alloys, Cambridge University Press, New York, 1980.
  33. S. Ukai, T. Okuda, M. Fujiwara, T. Kobayshi, S. Mizuta, H. Nakashima, Characterization of high temperature creep properties in recrystallized 12Cr-ODS ferritic steel claddings, J. Nucl. Sci. Technol. 39 (2002) 872-879.
  34. J.H. Schneibel, M. Heilmaier, W. Blum, G. Haseman, T. Shanmugasundaram, Temperature dependence of the strength of fine- and ultrafine-grained materials, Acta Mater. 59 (2011) 1300-1308. https://doi.org/10.1016/j.actamat.2010.10.062
  35. B. Mouawad, X. Boulnat, D. Fabregue, M. Perez, Y. de Carlan, Tailoring the microstructure and the mechanical properties of ultrafine grained high strength ferritic steels by powder metallurgy, J. Nucl. Mater. 465 (2015) 54-62. https://doi.org/10.1016/j.jnucmat.2015.05.053
  36. J. Friedel, Dislocations, Addison-Wesley, U.S.A., 1964.
  37. T. Muroga, T. Nagasaka, Y. Li, H. Abe, S. Ukai, A. Kimura, T. Okuda, Fabrication and characterization of reference 9Cr and 12Cr-ODS low activation ferritic/martensitic steels, Fusion Eng. Des. 89 (2014) 1717-1722. https://doi.org/10.1016/j.fusengdes.2014.01.010
  38. J.H. Schneibel, C.T. Liu, M.K. Miller, M.J. Mills, P. Sarosi, M. Heilmaier, D. Sturm, Ultrafine-grained nanocluster-strengthened alloys with unusually high creep strength, Scripta Mater. 61 (2009) 793-796. https://doi.org/10.1016/j.scriptamat.2009.06.034
  39. C.L. Fu, M. Krcmar, G.S. Painter, X.-Q. Chen, Vacancy mechanism of high oxygen solubility and nucleation of stable oxygen-enriched clusters in Fe, Phys. Rev. Lett. 99 (2007) 225502-1-225502-4. https://doi.org/10.1103/PhysRevLett.99.225502
  40. M.K. Miller, D.T. Hoelzer, E.A. Kenik, K.F. Russell, Stability of ferritic MA/ODS alloys at high temperatures, Intermetallics 13 (2005) 387-392. https://doi.org/10.1016/j.intermet.2004.07.036
  41. C.R. Stanek, C. Jiang, B.P. Uberuaga, K.E. Sickafus, A.R. Cleave, R.W. Grimes, Predicted structure and stability of $A_4\;B_3\;O_{12}\;{\delta}$-phase compositions, Phys. Rev. B 80 (2009) 174101-1-174101-11. https://doi.org/10.1103/PhysRevB.80.174101

Cited by

  1. Structure and composition of oxides in FeCrAl ODS alloy with Zr addition vol.33, pp.15, 2017, https://doi.org/10.1080/02670836.2017.1318245
  2. Implementation of GIXRD analysis and nanoindentation technique to study functional properties of materials – ODS case study vol.1166, pp.None, 2017, https://doi.org/10.1016/j.molstruc.2018.04.006
  3. Effect of Y/Zr Ratio on Inclusions and Mechanical Properties of 9Cr-RAFM Steel Fabricated by Vacuum Melting vol.28, pp.2, 2017, https://doi.org/10.1007/s11665-018-3838-0
  4. Effect of Zr on microstructure and high-temperature mechanical properties of austenitic heat resistant steel vol.6, pp.11, 2017, https://doi.org/10.1088/2053-1591/ab47da
  5. Development of a micro-scale Y-Zr-O oxide-dispersion-strengthened steel fabricated via vacuum induction melting and electro-slag remelting vol.51, pp.6, 2019, https://doi.org/10.1016/j.net.2019.05.001
  6. ODS EUROFER Steel Strengthened by Y-(Ce, Hf, La, Sc, and Zr) Complex Oxides vol.9, pp.11, 2017, https://doi.org/10.3390/met9111148
  7. Effects of yttrium and zirconium additions on inclusions and mechanical properties of a reduced activation ferritic/martensitic steel vol.27, pp.2, 2017, https://doi.org/10.1007/s42243-019-00332-9
  8. Evolution of Microstructures and Mechanical Properties of Zr-Containing Y-CLAM During Thermal Aging vol.33, pp.6, 2017, https://doi.org/10.1007/s40195-020-01011-5
  9. Microstructural and Mechanical Behavior of Al6061-Graphene Oxide Nanocomposites vol.26, pp.6, 2017, https://doi.org/10.1007/s12540-019-00361-9
  10. The probability-correlative oxide particle strengthening in solid-solution alloys vol.55, pp.27, 2020, https://doi.org/10.1007/s10853-020-04948-1
  11. Synthesis and microstructure evaluation of ODS steel 316L with zirconia dispersion vol.1912, pp.1, 2017, https://doi.org/10.1088/1742-6596/1912/1/012002
  12. Fabrication of Austenitic ODS 316L Stainless Steel with Arc Plasma Sintering Method vol.1912, pp.1, 2017, https://doi.org/10.1088/1742-6596/1912/1/012003
  13. Progress of zirconium alloying in iron-based alloys and steels vol.37, pp.9, 2017, https://doi.org/10.1080/02670836.2021.1958488
  14. The Effect of Zr Addition on Melting Temperature, Microstructure, Recrystallization and Mechanical Properties of a Cantor High Entropy Alloy vol.14, pp.20, 2017, https://doi.org/10.3390/ma14205994
  15. Oxidation behaviour and microstructure evolution of Zr-containing steel under continuous high-temperature exposure vol.275, pp.None, 2017, https://doi.org/10.1016/j.matchemphys.2021.125324