References
- D. Yamaguchi, K. Furukawa, M. Takasuga, K. Watanabe, A magnetic carbon sorbent for radioactive material from the Fukushima nuclear accident, Scientif Rep. 4 (2014) 6053.
- R. Yavari, D. Huang, A. Mostofizadeh, Sorption of strontium ions from aqueous solutions by oxidized multiwall carbon nanotubes, J. Radioanal. Nucl. Chem. 285 (2010) 703-710. https://doi.org/10.1007/s10967-010-0600-y
- Y.J. Park, Y.C. Lee, W.S. Shin, S.J. Choi, Removal of cobalt, strontium and cesium from radioactive laundry wastewater by ammonium molybdophosphate- polyacrylonitrile (AMP-PAN), Chem. Eng. J. 162 (2010) 685-695. https://doi.org/10.1016/j.cej.2010.06.026
- Y.W. Chen, J.L. Wang, The characteristics and mechanism of Co(II) removal from aqueous solution by a novel xanthate-modified magnetic chitosan, Nucl. Eng. Des. 242 (2012) 452-457. https://doi.org/10.1016/j.nucengdes.2011.11.004
- J.L. Wang, C. Chen, Chitosan-based biosorbents: modification and application for biosorption of heavy metals and radionuclides, Bioresourc. Technol. 160 (2014) 129-141. https://doi.org/10.1016/j.biortech.2013.12.110
- M. Galamvos, J. Kufcakova, P. Rajec, Sorption of strontiumon Slovak bentonites, J. Radioanal. Nucl. Chem. 281 (2009) 347-357. https://doi.org/10.1007/s10967-009-0017-7
-
N.J. Coleman, D.S. Brassington, A. Raza, A.P. Mendham, Sorption of
$Co^{2+}$ and$Sr^{2+}$ by waste-derived$11{\AA}$ tobermorite, Waste Mange. 26 (2006) 260-267. https://doi.org/10.1016/j.wasman.2005.01.019 -
S. Dimovic, I. Smiciklas, I. Plecas, D. Autonovic, Kinetic study of
$Sr^{2+}$ sorption by bone char, Sep. Sci.Technol. 44 (2009) 645-667. https://doi.org/10.1080/01496390802634307 -
N.H.M. Kamel, Adsorption models of
$^{137}Cs$ radionuclide and Sr(II) on some Egyptian soils, J. Environ. Radioact. 101 (2010) 297-303. https://doi.org/10.1016/j.jenvrad.2010.01.001 - G.M. Gadd, Interactions of fungi with toxic metals, New Phytol. 124 (1993) 25-60. https://doi.org/10.1111/j.1469-8137.1993.tb03796.x
- J.L. Wang, C. Chen, Biosorption of heavy metals by Saccharomyces cerevisiae: a review, Biotechnol. Adv. 24 (2006) 427-451. https://doi.org/10.1016/j.biotechadv.2006.03.001
- J.L. Wang, C. Chen, Biosorbents for heavy metals removal and their future, Biotechnol. Adv. 27 (2009) 195-226. https://doi.org/10.1016/j.biotechadv.2008.11.002
- L.M. Zhou, J.P. Xu, X.Z. Liang, Z.R. Liu, Adsorption of platinum(IV) and palladium(II) from aqueous solution by magnetic cross-linking chitosan nanoparticles modified with ethylenediamine, J. Hazard. Mater. 182 (2010) 518-524. https://doi.org/10.1016/j.jhazmat.2010.06.062
- Y.W. Chen, J.L. Wang, Preparation and characterization of magnetic chitosan nanoparticles and its application for Cu (II) removal, Chem. Eng. J. 168 (2010) 286-292.
-
Y.H. Zhu, J. Hu, J.L. Wang, Removal of
$Co^{2+}$ from radioactive wastewater by polyvinyl alcohol (PVA)/chitosan magnetic composite, Prog. Nucl. Energ. 71 (2014) 172-178. https://doi.org/10.1016/j.pnucene.2013.12.005 - E. Repo, J.K. Warchol, T.A. Kurniawan, M.E.T. Silanpaa, Adsorption of Co(II) and Ni(II) by EDTA-and /or DTPA-modified chitosan: kinetic and equilibrium modeling, Chem. Eng. J. 161 (2010) 73-82. https://doi.org/10.1016/j.cej.2010.04.030
-
Y.W. Chen, J.L. Wang, Removal of radionuclide
$Sr^{2+}$ ions from aqueous solution using synthesized magnetic chitosan beads, Nucl. Eng. Des. 242 (2010) 445-451. - P.E. Podzus, M.E. Daraio, S.E. Jacobo, Chitosan magnetic microspheres for the technological applications: preparation and characterization, Physica. B. 404 (2009) 2710-2718. https://doi.org/10.1016/j.physb.2009.06.093
- J.L. Wang, Microbial Immobilization Techniques and Water Pollution Control, Science Press, Beijing, 2002.
-
C. Chen, J.L. Wang, Removal of
$Pb^{2+}$ ,$Ag^+$ ,$Cs^+$ ,$Sr^{2+}$ from aqueous solution by brewery's waste biomass, J. Hazard. Mater. 151 (2008) 65-70. https://doi.org/10.1016/j.jhazmat.2007.05.046 - A. Naeem, J.R. Woertz, J.B. Fein, Experimental measurement of proton, Cd, Pb, Sr, and Zn adsorption onto the fungal species Saccharomyces cerevisiae, Environ. Sci. Technol. 40 (2006) 5724-5729. https://doi.org/10.1021/es0606935
- Q.Q. Peng, Y.G. Liu, G.M. Zeng, W.H. Xu, C.P. Yang, J.J. Zhang, Biosorption of copper(II) by immobilizing Saccharomyces cerevisiae on the surface of chitosan-coated magnetic nanoparticles from aqueous solution, J. Hazard. Mater. 177 (2010) 676-682. https://doi.org/10.1016/j.jhazmat.2009.12.084
- J.B. Fein, A.M. Martin, P.G. Wightman, Metal adsorption onto bacterial surfaces: development of a predictive approach, Geochim. Cosmochim Acta. 65 (2001) 4267-4273. https://doi.org/10.1016/S0016-7037(01)00721-9
- J.B. Fein, C.J. Daughney, N. Yee, T.A. Davis, A chemical equilibrium model for metal adsorption onto bacterial surfaces, Geochim, Cosmochim Acta. 61 (1997) 3319-3328. https://doi.org/10.1016/S0016-7037(97)00166-X
- D.M. Borrok, J.B. Fein, The impact of ionic strength on the adsorption of protons, Pb, Cd, and Sr onto the surfaces of Gram negative bacteria: testing non-electro static, diffuse, and triple-layer models, J. Colloid Interface Sci. 286 (2005) 110-126. https://doi.org/10.1016/j.jcis.2005.01.015
- J.L. Wang, Biosorption of copper(II) by chemically modified biomass of Saccharomyces cerevisiae, Process Biochem. 37 (2002) 847-850. https://doi.org/10.1016/S0032-9592(01)00284-9
-
V.D. Maria, S.D. Ecaterina, Evaluation of
$Cu^{2+}$ ,$Co^{2+}$ and$Ni^{2+}$ ions removal from aqueous solution using a novel chitosan/clinoptilolite composite: kinetics and isotherms, Chem. Eng. J. 160 (2010) 157-163. https://doi.org/10.1016/j.cej.2010.03.029 - J.M. Smith, Chemical Engineering Kinetics, third ed., McGraw-Hill, Singapore, 1981.
- G.N. Kousalya, M.R. Gandhi, N. Viswanathan, V. Meenakshi, Preparation and metal uptake studies of modified forms of chitin, Int. J. Biol. Macromol. 47 (2010) 583-589. https://doi.org/10.1016/j.ijbiomac.2010.07.014
-
B. Ma, S. Oh, W.S. Shin, S.J. Choi, Removal of
$Co^{2+}$ ,$Sr^{2+}$ and$Cs^+$ from aqueous solution by phosphate-modified montmorillonite (PMM), Desalination 276 (2011) 336-346. https://doi.org/10.1016/j.desal.2011.03.072 - W. Guan, J.M. Pan, H.X. Ou, X. Wang, X.H. Zou, W. Hu, C.X. Li, X.Y. Wu, Removal of strontium(II) ions by potassium tetratitanate whisker and sodium trititanate whisker from aqueous solution: Equilibrium, kinetics and thermodynamics, Chem. Eng. J. 167 (2011) 215-222. https://doi.org/10.1016/j.cej.2010.12.025
Cited by
- Removal of various pollutants from water and wastewater by modified chitosan adsorbents vol.47, pp.23, 2017, https://doi.org/10.1080/10643389.2017.1421845
- Biosorption of strontium ions from aqueous solution using modified eggshell materials vol.105, pp.12, 2017, https://doi.org/10.1515/ract-2016-2729
- Treatment of Radioactive Wastewater from High-Temperature Gas-Cooled Reactor by Membrane System vol.203, pp.1, 2017, https://doi.org/10.1080/00295450.2018.1432838
- Removal of cobalt ion from aqueous solution using magnetic graphene oxide/chitosan composite vol.38, pp.suppl1, 2019, https://doi.org/10.1002/ep.12912
- Algal sorbent derived from Sargassum horneri for adsorption of cesium and strontium ions: equilibrium, kinetics, and mass transfer vol.103, pp.6, 2019, https://doi.org/10.1007/s00253-019-09619-z
- Characterization and Adsorption Behavior of Strontium from Aqueous Solutions onto Chitosan-Fuller’s Earth Beads vol.7, pp.1, 2017, https://doi.org/10.3390/healthcare7010052
- Removal of cesium ions from aqueous solutions using various separation technologies vol.18, pp.2, 2019, https://doi.org/10.1007/s11157-019-09499-9
- In vitro release and antioxidative potential of Pequi oil-based biopolymers (Caryocar brasiliense Cambess) vol.26, pp.8, 2017, https://doi.org/10.1007/s10965-019-1836-z
- Application of tracer technique in remediation of Sr(II) from simulated low level radioactive waste vol.322, pp.1, 2017, https://doi.org/10.1007/s10967-019-06514-9
- Adsorptive removal of strontium ions from aqueous solution by graphene oxide vol.26, pp.29, 2019, https://doi.org/10.1007/s11356-019-06149-z
- Immobilized microbial nanoparticles for biosorption vol.40, pp.5, 2017, https://doi.org/10.1080/07388551.2020.1751583
- Biosorptive removal of cobalt(II) from aqueous solutions using magnetic cyanoethyl chitosan beads vol.8, pp.6, 2020, https://doi.org/10.1016/j.jece.2020.104531
- Understanding the holistic approach to plant-microbe remediation technologies for removing heavy metals and radionuclides from soil vol.3, pp.None, 2021, https://doi.org/10.1016/j.crbiot.2021.02.004
- Adsorptive removal of Sr(II) from aqueous solution by polyvinyl alcohol/graphene oxide aerogel vol.278, pp.None, 2017, https://doi.org/10.1016/j.chemosphere.2021.130492
- Removal of Cesium from Radioactive Waste Liquids Using Geomaterials vol.11, pp.18, 2017, https://doi.org/10.3390/app11188407
- Polysaccharides as Support for Microbial Biomass-Based Adsorbents with Applications in Removal of Heavy Metals and Dyes vol.13, pp.17, 2017, https://doi.org/10.3390/polym13172893
- One-step solid-state fermentation for efficient erythritol production from the simultaneous saccharified crop wastes by incorporating immobilized cellulase vol.176, pp.None, 2017, https://doi.org/10.1016/j.indcrop.2021.114351