DOI QR코드

DOI QR Code

Efficient Scheduling Schemes for Low-Area Mixed-radix MDC FFT Processor

저면적 Mixed-radix MDC FFT 프로세서를 위한 효율적인 스케줄링 기법

  • Received : 2016.12.15
  • Accepted : 2017.06.16
  • Published : 2017.07.25

Abstract

This paper presents a high-throughput area-efficient mixed-radix fast Fourier transform (FFT) processor using the efficient scheduling schemes. The proposed FFT processor can support 64, 128, 256, and 512-point FFTs for orthogonal frequency division multiplexing (OFDM) systems, and can achieve a high throughput using mixed-radix algorithm and eight-parallel multipath delay commutator (MDC) architecture. This paper proposes new scheduling schemes to reduce the size of read-only memories (ROMs) and complex constant multipliers without increasing delay elements and computation cycles; thus, reducing the hardware complexity further. The proposed mixed-radix MDC FFT processor is designed and implemented using the Samsung 65nm complementary metal-oxide semiconductor (CMOS) technology. The experimental result shows that the area of the proposed FFT processor is 0.36 mm2. Furthermore, the proposed processor can achieve high throughput rates of up to 2.64 GSample/s at 330 MHz.

본 논문에서는 고속 데이터 전송을 위해 orthogonal frequency division multiplexing (OFDM) 시스템에 적용 가능한 고속 fast Fourier transform (FFT) 프로세서를 제안하였다. 제안하는 FFT 프로제서는 높은 처리율을 만족하기 위해 mixed-radix 알고리즘과 8개의 병렬 경로를 가지는 multipath delay commutator (MDC) 파이프라인 구조를 채택하였다. 하드웨어 복잡도를 줄이기 위해서 새로운 스케줄링 기법들을 적용하여 twiddle factor 연산을 위한 read-only memories (ROM)의 크기를 줄이는 구조와 복소 상수 곱셈기의 수를 줄이는 구조를 제안한다. 제안하는 구조는 지연 소자와 연산 사이클의 증가 없이 하드웨어 복잡도를 줄일 수 있다. 또한, IEEE 802.11 ac/ad와 같은 고속 OFDM 시스템을 위해 64/128/256/512-포인트 FFT 연산이 가능하다. 제안하는 FFT 프로세서는 Verilog-HDL로 모델링하여 Samsung 65nm 공정 라이브러리로 합성하여 0.36mm2의 면적과 330MHz의 동작 주파수에서 2.64 GSample/s를 보이고 있다.

Keywords

References

  1. Anonymous, "Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications," in Proc. IEEE Advanced Communication Technology (ICACT), Feb. 2012, pp. 804-808, Part 15.3.
  2. Anonymous "Wireless MAC and PHY Specifications for High Rate WPANs," IEEE Std 802.15.3-2003, Local and metropolitan area networks Part 15.3.
  3. IEEE 802.16 Working Group, "IEEE Standard for Local and Metropolitan Area Networks. Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems. Amendment 3: Management Plane Procedures and Services," IEEE Standard, vol. 802, 2006.
  4. S. Huang and S. Chen, "A high-throughput Radix-16 FFT processor with parallel and normal input/output ordering for IEEE 802.15. 3c Systems," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 59, no. 8, pp. 1752-1765, Oct. 2012. https://doi.org/10.1109/TCSI.2011.2180430
  5. T. Cho and H. Lee, "A High-speed lowcomplexity modified Randix-25 FFT processor for high rate WPAN applications," IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 21, no. 1, pp. 187-191, Feb. 2013. https://doi.org/10.1109/TVLSI.2011.2182068
  6. C. Wang, Y. Yan, X. Fu, "A High-Throughput Low-Complexity Radix-24-$2^2$-$2^3$ FFT/IFFT Processor with Parallel and Normal Input/ Output Order for IEEE 802.11ad Systems," IEEE Trans. Very Large Scale Integr. (VLSI) Syst, 2015. (online published)
  7. T. Ahmed, M. Garrido, and O. Gustafsson, "A 512-point 8-parallel pipelined feedforward FFT for WPAN," in Proc. ASILOMAR, Nov. 2011, pp. 981-984.
  8. K. Yang, S. Tsai and G.C. Chuang, "MDC FFT/IFFT processor with variable length for MIMO-OFDM systems," IEEE Trans. Very Large Scale Integration (VLSI) Syst., vol. 21, no. 4, pp. 720-731, Apr. 2013. https://doi.org/10.1109/TVLSI.2012.2194315
  9. M. Garrido, J. Grajal, M. Sanchez, and O. Gustafsson, "Pipelined radix-2k feedforward FFT architectures," IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 21, no. 1, pp. 23-32, Jan. 2013. https://doi.org/10.1109/TVLSI.2011.2178275
  10. F. Qureshi, S.A. Alam and O. Gustafsson, "4K-Point FFT Algorithms based on optimized twiddle factor multiplication for FPGAs," in proc. IEEE Asia Pacific postgraduate research microelectron, 2010, pp. 225-228.