DOI QR코드

DOI QR Code

Comparison of Heating Behavior of Various Susceptor-embedded Thermoplastic Polyurethane Adhesive Films via Induction Heating

다양한 발열체가 분산된 폴리우레탄 접착 필름의 유도가열 거동 비교

  • Kwon, Yongsung (Department of Industrial Chemistry, Pukyong National University) ;
  • Bae, Duckhwan (Department of Industrial Chemistry, Pukyong National University) ;
  • Shon, MinYoung (Department of Industrial Chemistry, Pukyong National University)
  • Received : 2017.04.12
  • Accepted : 2017.06.28
  • Published : 2017.06.30

Abstract

The effect of nanoscopic and microscopic Fe, $Fe_3O_4$, and Ni particles and their shapes and substrate materials on the heating behavior of thermoplastic polyurethane (TPU) adhesive films was investigated via induction heating. The heat generation tendency of $Fe_3O_4$ particles was higher than that shown by Fe and Ni particles in the TPU adhesive films. When the Fe and Ni particle size was larger than the penetration skin depth, the initial heating rate and maximum temperature increased with an increase in the particle size. This is attributed to the eddy current heat loss. The heating behavior of the TPU films with Ni particles of different shapes was examined, and different hysteresis heat losses were observed depending on the particle shape. Consequently, the flake-shaped Ni particles showed the most favorable heat generation because of the largest hysteresis loss. The substrate materials also affected the heating behavior of the TPU adhesive films in an induction heating system, and the thermal conductivity of the substrate materials was determined to be the main factor affecting the heating behavior.

나노 및 마이크로 크기의 철(Fe), 마그네타이트($Fe_3O_4$) 및 니켈(Ni) 입자가 분산된 열가소성 폴리우레탄(TPU) 접착필름에서 각 금속의 크기 및 형상 그리고 피착재의 종류에 따른 접착필름의 유도가열 거동을 연구하였다. 연구결과 동일한 첨가량 및 유사한 입자 크기에서 철과 니켈이 분산된 열가소성 TPU 접착필름에 비해 마그네타이트가 분산된 TPU 접착필름의 발열이 높게 나타났다. 철과 니켈의 입자 크기가 자기장의 표면 침투 깊이(Penetration skin depth) 보다 클 경우 와전류에 의한 발열로 인해 입자 크기가 커질수록 초기 승온속도와 최고 온도가 증가하는 것을 확인하였다. 서로 다른 형태를 갖는 니켈 입자를 사용한 유도가열 실험 결과 편상(flake)의 입자가 TPU 접착필름에 분산되었을 때 자기이력(Magnetic hysteresis)에 의한 열 발생으로 가장 높은 발열이 나타남을 알 수 있었다. 또한 금속 입자가 분산된 TPU 접착필름이 서로 다른 피착재에 적용되었을 때 발열현상이 상이하게 나타났으며 피착재의 열전도도에 따른 결과를 확인하였다.

Keywords

References

  1. Bayerl, T., Duhovic, M., Mitschang, P., and Bhattacharyya, D., "The Heating of Polymer Composites by Electromagnetic Induction-a Review, Compos:Part A, Vol. 57, 2014, pp. 27-40. https://doi.org/10.1016/j.compositesa.2013.10.024
  2. Buckley, J.D., and Fox, R.L., "Rapid Electromagnetic Induction Bonding of Composites, Plastics, and Metals," Materials Research Society Symposium, Vol. 124, Boston, MA, 1988.
  3. Benetar, A., and Gutowski, T.G., "Methods for Fusion Bonding Thermoplastic Composites", SAMPE Quarterly, Vol. 18, No. 1, pp. 35-42.
  4. Maguire, D.M., "Joining Thermoplastic Composites", SAMPE J., Vol. 25, 1989, pp. 11-14.
  5. Yarlagadda, S., Gillespie Jr. J.W., and Fink, B.K., "Resistive Susceptor Design for Uniform Heating During Induction Bonding of Composites," Journal of Thermoplastic Composite Materials, Vol. 11, No. 4, 1998, pp. 321-337. https://doi.org/10.1177/089270579801100403
  6. Border, J., and Salas, R., "Induction Heated Joining of Ther-moplastic Composites without Metal Susceptors", Proceedings of the 34th International SAMPE Symposium, CA, 1989, pp. 2569-2578.
  7. Lawless, G.W., and Reinhart, T.J., "Study of the Induction Heating of Organic Composites", Proceedings of the 24th International SAMPE Technology Conference, 1992, pp. 375-384.
  8. Smiley, A.J., Halbritter, A., Cogswell, F.N., and Meakin, P.J., "Dual Bonding of Thermoplastic Composite Structure", Polymer Engineering & Science, Vol. 31, 1991, pp. 526-532. https://doi.org/10.1002/pen.760310709
  9. Suwanwatana, W., Yarlagadda, S., and Gillespie, J.W., "Influence of Particle Size on Hysteresis Heating Behavior of Nickel Particulate Polymer Films", Composite Science and Technology, Vol. 66, 2006, pp. 2825-2836. https://doi.org/10.1016/j.compscitech.2006.02.033
  10. Ahmed, T.J., Stavrov, D., Bersee, H.E.N., and Beukers, A., "Induction Welding of Thermoplastic Composites-an Overview", Compos: Part A, Vol. 37, 2006, pp. 1638-1651. https://doi.org/10.1016/j.compositesa.2005.10.009
  11. Bayerl, T., and Mitschang, P., "Heating of Polymer-polymer Composite by Inductive Means", 18th International Conference on Composite Materials Proceedings, 2009.
  12. Aktham, A., Jean, Y., and Manel, Z., "A High Dynamic Range GMI Current Sensor", Journal of Sensor Technology, Vol. 2, 2012, pp. 165-171. https://doi.org/10.4236/jst.2012.24023