DOI QR코드

DOI QR Code

Characterization of artificially induced zinc-tolerant yeast mutants

아연 저항성 갖는 인위적으로 유도된 효모 돌연변이체의 특성

  • Lee, Sangman (Division of Applied Biology and Chemistry, School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University)
  • Received : 2017.01.10
  • Accepted : 2017.03.07
  • Published : 2017.06.30

Abstract

Bioremediation is a technique using microorganisms to clean up contaminated pollutants including heavy metals. It is well known that yeasts have a high capacity to remove a wide range of metals by biosorption. Therefore, this study was focused on to obtain yeast mutant that has strong tolerance to zinc (Zn), one of representative heavy metals. The Zn resistant yeast mutant (ZnR) was induced and isolated by growing yeast cells in media containing 1 mM $ZnCl_2$ and gradually increasing the concentration until 80 mM $ZnCl_2$, in which cells were adapted and survived. The induced ZnR cells showed strong tolerance to Zn stress compared with control cells. Moreover, the ZnR cells showed increased tolerance to cadmium and nickel stress but decreased tolerance to copper stress. The increased tolerance of ZnR cells to Zn stress was due to mutation of genes. This study can be useful in bioremediation of heavy metals as the metal tolerant microorganism was artificially induced in short time.

생물학적정화는 미생물을 이용하여 중금속을 포함한 오염물질을 정화하는 방법이다. 효모는 다양한 중금속을 흡착하여 정화하는 능력이 우수하다고 잘 알려졌다. 따라서 본 연구는 여러 중금속 중 하나인 아연에 저항성인 큰 효모를 인위적인 돌연변이를 통해서 얻는 것에 초점을 두었다. 대조구인 효모를 1 mM 농도의 아연이 포함된 배지에서 키운 후 점차 아연의 농도를 높여 최종적으로 80 mM이 되는 지점까지 키웠으며 이 농도는 효모가 점진적 적응을 거쳤어도 성장이 불가능한 한계점 근처이며 이렇게 유도 분리된 효모를 ZnR이라 명명하였다. ZnR은 대조구 효모보다 아연에 대한 저항성이 현저히 증가되었으며 이 외에 카드뮴과 니켈에 대한 저항성도 증가되었지만 구리에 대한 저항성은 오히려 감소 되었다. ZnR이 보여준 아연에 대한 저항성 증가는 유전자 돌연변이에 의한 영구적인 획득 결과이다. 단 기간 내에 아연에 대한 저항성 큰 효모의 인위적인 유도 및 분리는 생물학적정화 연구에 유용하게 쓰여질 정보이다.

Keywords

References

  1. Ahemad M, Malik A (2012) Bioaccumulation of heavy metals by zinc resistant bacterial isolated from agricultural soils irrigated with wastewater. Bacteriol J 2: 12-21 https://doi.org/10.3923/bj.2012.12.21
  2. Diaz-Ravina, Baath E (1996) Development of metal tolerance in soil bacterial communities exposed to experimentally increased metal levels. Appl Environ Microbiol 62: 2970-2977
  3. Diaz-Ravina M, Baath E (2001) Response of bacterial communities preexposed to different metals and reinoculated in an unpolluted soil. Soil Biology Biochemistry 33: 241-248 https://doi.org/10.1016/S0038-0717(00)00136-X
  4. Duxbury T, Bicknell B (1983) Metal-tolerant bacterial populations from natural and metal-polluted soils. Soil Biol Biochem 15: 243-250 https://doi.org/10.1016/0038-0717(83)90066-4
  5. Gad AS, Attia M, Ahmed HA (2010) Heavy metals bio-remediation by immobilized Saccharomyces cerevisiae and Opuntia indica waste. J American Sci 6: 79-87
  6. Gaur N, Flora G, Yadav M, Tiwari A (2014) A review with recent advancements on bioremediation-based abolition of heavy metals. Environ Sci Proceses Impacts 16: 180-193 https://doi.org/10.1039/C3EM00491K
  7. Giaginis C, Gatzidou E, Theocharis S (2006) DNA repair systems at targets of cadmium toxicity. Toxicol Appl Pharmacol 213: 282-290 https://doi.org/10.1016/j.taap.2006.03.008
  8. Jin YH, Clark AB, Slebos RJ, Al-Rafai H, Taylor JA, Kundel TA, Resnick MA, Gordenin DA (2003) Cadmium is a mutagen that acts by inhibiting mismatch repair. Nat Gen 34: 326-329 https://doi.org/10.1038/ng1172
  9. Lee S, Kang BS (2005) Phytochelatin is not a primary factor in determining copper tolerance. J Plant Biol 48: 32-38 https://doi.org/10.1007/BF03030562
  10. Rehman A, Farooq H, Hasnain S (2008) Biosorption of copper by yeast, Loddermyces elongisporus, isolated from industrial effluents: its potential use in wastewater treatment. J Basic Microbiol 48: 195-201 https://doi.org/10.1002/jobm.200700324
  11. Ruta L, Paraschivescu C, Matache M, Avramescu S, Farcassanu IC (2010) Removing heavy metals from synthetic effluents using “kamikaze” Saccharomyces cerevisiae cells. App Microbiol Biotechnol 85: 763-771 https://doi.org/10.1007/s00253-009-2266-3
  12. Sakulsak N (2012) Metallothionein: An overview on its metal homeostatic regulation in mammals. Int J Morphol 30: 1007-1012 https://doi.org/10.4067/S0717-95022012000300039
  13. Soares EV, Soares HM (2012) Bioremediation of industrial effluents containing heavy metals using brewing cells of Saccharomyces cerevisiae as a green technology: a review. Environ Sci Pollut Res Int 19: 1066-1083 https://doi.org/10.1007/s11356-011-0671-5
  14. Villegas LB, Amoroso MJ, deFigueroa LIC (2005) Copper tolerant yeasts isolated from polluted area of Argentina. J Basic Microbiol 45: 381-391 https://doi.org/10.1002/jobm.200510569
  15. Yadav SK (2010) Heavy metals toxicity in plants: An overview on the role of glutathione and phytochelatins in heavy metals stress tolerance of plants. South African J Bot 76:167-179 https://doi.org/10.1016/j.sajb.2009.10.007
  16. Zafar S, Aquil F, Ahmad I (2007) Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil. Bioresource Technology 98: 2557-2561 https://doi.org/10.1016/j.biortech.2006.09.051