References
- 강영란, 조정수, 김진환(2012). 분수 나눗셈의 문장제에 대한 초등 교사들의 전문화된 내용지식(SCK) 분석. 수학교육논문집, 26(3), 301-316.
- 강정기(2016). 표기 관점에서 무리수 개념 학습의 어려움과 대안. 한국학교수학회논문집, 19(1), 63-82.
- 강향임, 최은아(2015). 비와 비율에 관한 학생의 오류와 어려움 해결을 위해 필요한 교사지식. 학교수학, 17(4), 613-632.
- 김효영(2007). 무리수의 개념과 성질 및 계산과 정에서 나타나는 오류분석 : 중학교 3학년 대상으로. 한국교원대학교 대학원 석사학위논문.
- 변희현, 박선용(2002). 무리수의 개념적 측면을 강조한 교육방안. 학교수학, 4(4), 643-655.
- 이선비(2013). 예비 중등 교사들의 무리수에 대한 이해. 한국학교수학회논문집, 16(3), 499-518.
- 이지현(2015). 유리수와 무리수의 합집합을 넘어서: 실수가 자명하다는 착각으로부터 어떻게 벗어날 수 있는가?. 수학교육학연구, 25(3), 263-279.
- 이영란, 이경화(2006). Freudenthal 의 수학화 학습지도론에 따른 무리수 개념 지도 방법의 적용 사례. 수학교육학연구, 16(4), 297-312.
- 이지원(2008). 무리수 개념의 이해에 관한 연구. 서울대학교 대학원 석사학위 논문.
- 최은아, 강향임(2016). 예비교사의 무리수의 개념과 표현에 대한 이해. 학교수학, 18(3), 647-666.
- 한혜숙(2016). 예비수학교사의 MKT에 관한 연구. 수학교육논문집, 30(1), 101-120.
- Adams, T. I. (1998). Prospective elementary teachers' mathematics subject matter knowledge: The real number system. Action in Teacher Education, 20(2), 35-48. https://doi.org/10.1080/01626620.1998.10462915
- Ball, D. L., Hill, H. C., & Bass, H. (2005). Knowing mathematics for teaching: Who knows mathematics well enough to teach third grade, and how can we decide?. American Educator, 29(1), 14-46.
- Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What Makes It Special? Journal of Teacher Education, 59(5), 389-407. https://doi.org/10.1177/0022487108324554
- Ding, M. (2008). Teacher knowledge necessary to address student errors and difficulties about equivalent fractions. In Kulm, G. (Ed.), Teacher Knowledge and Practice in Middle Grades mathematics. (pp. 147-171). Rotterdam, Netherlands: Sense.
- Fischbein, E., Jehiam, R., & Cohen, C. (1995). The concept of irrational number in high school students and prospective teachers. Educational Studies in Mathematics, 29, 29-44. https://doi.org/10.1007/BF01273899
- Gray, E. M., & Tall, D. O. (1994). Duality, ambiguity, and flexibility: A " proceptual" view of simple arithmetic. Journal for research in Mathematics Education, 116-140.
- Janvier, C. (1987). Representation and understanding: The notion of function as an example. In C. Janvier (Ed.), Problems of representation in the teaching and learning of mathematics (pp. 67-72). Hillsdale, NJ: Erlbaum.
- Kapur, M. (2014). Productive Failure in Learning Math. Cognitive Science Society, 38, 1008-1022. https://doi.org/10.1111/cogs.12107
- Lamon, S. J. (2001). Presenting and representing: From fractions to rational numbers. In A. Cuoco (Ed.), The roles of representation in school mathematics (pp. 146-165). Reston, VA: National Council of Teachers of Mathematics.
- Lesh, R., Behr, M., & Post, M. (1987). Rational number relations and proportions. In C. Janvier (Ed.), Problems of representation in the teaching and learning of mathematics (pp. 41-58). Hillsdale, NJ: Erlbaum.
- Ma, L. (1999). Knowing and teaching elementary mathematics: Teachers' understanding of fundamental mathematics in China and the United States. Mahwah, NJ: Erlbaum.
- National Council of Teachers of Mathematics (2007). 학교수학을 위한 원리와 규준. (류희찬, 조완영, 이경화, 나귀수, 김남균, 방정숙 공역), 서울: 경문사. (영어 원작은 2000년 출판).
- Peled, I., & Hershkovitz, S. (1999). Difficulties in knowledge integration: Revisiting Zeno's paradox with irrational numbers. International Journal of Mathematical Education in Science and Technology, 30(1), 39-46. https://doi.org/10.1080/002073999288094
- Peng, A., & Luo, Z. (2009). A framework for examining mathematics teacher knowledge as used in error analysis. For the Learning of Mathematics, 29(3), 22-25.
- Sfard, A. (1989). Transition from Operational to Structural Conception: The notion of function revisited. Proceedings of PME XIII, Paris, 151-158.
- Shalem, Y., Sapire, I., & Sorto, M. A. (2014). Teachers' explanations of learners' errors in standardised mathematics assessments: original research. Pythagoras, 35(1), 1-11.
- Sirotic, N., & Zazkis, R. (2007b). Irrational numbers: The gap between formal and intuitive knowledge. Educational Studies in Mathematics, 65, 49-76. https://doi.org/10.1007/s10649-006-9041-5
- Tall, D. (1991). Reflections, in Tall D. O. (ed.), Advanced Mathematical Thinking (pp. 251-259). Kluwer: Holland.
- Thompson, P. W., & Thompson, A. G. (1994). Talking about rates conceptually, part I : A teacher's struggle. Journal for Research in Mathematics Education, 25(3), 279-303. https://doi.org/10.2307/749339
- Zazkis, R. (2005). Representing numbers: Prime and irrational. International Journal of Mathematical Education in Science and Technology. 36(2-3), 207-218. https://doi.org/10.1080/00207390412331316951
- Zazkis, R., & Sirotic, N. (2010). Representing and Defining Irrational Numbers: Exposing the Missing Link. CBMS Issues in Mathematics Education, 16. American mathematical Society.