DOI QR코드

DOI QR Code

Identification and Characterization of an Agarase- and Xylanse-producing Catenovulum jejuensis A28-5 from Coastal Seawater of Jeju Island, Korea

제주 연안해수로부터 한천 분해 효소 및 자일란 분해 효소를 생산하는 Catenovulum jejuensis A28-5의 동정 및 특성 규명

  • Kim, Da Som (Biological and Genetic Resources Assessment Division, National Institute of Biological Resources) ;
  • Jeong, Ga Ram (Biological and Genetic Resources Assessment Division, National Institute of Biological Resources) ;
  • Bae, Chang Hwan (Biological and Genetic Resources Assessment Division, National Institute of Biological Resources) ;
  • Yeo, Joo-Hong (Biological and Genetic Resources Assessment Division, National Institute of Biological Resources) ;
  • Chi, Won-Jae (Biological and Genetic Resources Assessment Division, National Institute of Biological Resources)
  • 김다솜 (국립생물자원관 생물자원활용부 유용자원분석과) ;
  • 정가람 (국립생물자원관 생물자원활용부 유용자원분석과) ;
  • 배창환 (국립생물자원관 생물자원활용부 유용자원분석과) ;
  • 여주홍 (국립생물자원관 생물자원활용부 유용자원분석과) ;
  • 지원재 (국립생물자원관 생물자원활용부 유용자원분석과)
  • Received : 2017.03.31
  • Accepted : 2017.06.08
  • Published : 2017.06.28

Abstract

Strain A28-5, which can degrade xylan and agar in solid medium, was isolated from a coastal seawater sample collected from Jeju Island, South Korea. This strain was found to be a gram-negative, $Na^+$-requiring bacterial strain with a polar flagellum for motility. Additionally, the strain was tolerant to antibiotics such as ampicillin and thiostrepton. The G+C content of the genome was 43.96% and menaquinone-7 was found to be the predominant quinone. Major fatty acids constituting the cell wall of the strain were $C_{16:1}$ ${\omega}7c/iso-C_{15:0}$ 2-OH (23.32%), $C_{16:0}$ (21.83%), and $C_{18:1}$ ${\omega}7c$ (17.98%). The 16S rRNA gene sequence of the strain showed the highest similarity (98.94%) to that of Catenovulum agarivorans YM01, which was demonstrated by constructing a neighbor-joining phylogenetic tree. A28-5 was identified as a novel species of the genus Catenovulum via DNA-DNA hybridization with Catenovulum agarivorans YM01, and thus was named as Catenovulum jejuensis A28-5. The formation of tetramers and hexamers of xylooligosaccharides and (neo)agarooligosaccharides, respectively, were confirmed by thin-layer chromatography analysis using an enzyme reaction solution containing xylan or agarose with two crude enzymes prepared from the liquid culture of the strain.

Strain A28-5는대한민국 제주도 연안의 해수샘플로부터 고체배지내 xylan과 agar를 분해하는 균주로 분리되었다. Strain A28-5는그람 음성균으로 한 개의 polar flagella로 운동성을 갖는 $Na^+$ 이온 요구성 균주로 분석되었다. 또한 ampilcillin과 thiostreptone 등의 항생제에 내성을 보였다. Genome 내 G+C content는 43.96%이고, Menaquinone-7 (MK-7)을 predominant quinone으로 함유하고 있었다. Strain A28-5의 세포벽을 구성하는 주요 지방산은 $C_{16:1}$ ${\omega}7c/iso-C_{15:0}$ 2-OH (23.32%), $C_{16:0}$ (21.83%), $C_{18:1}$ ${\omega}7c$ (17.98%)였다. strain A28-5의 16S rRNA gene sequence는 Catenovulum agarivorans YM01와 가장 높은 상동성(98.94%)을 보였으며, Neighbor-Joining phylogenetic tree 제작을 통해서 Catenovulum agarivorans YM01와 가장 높은 근연관계를 보이는 것을 증명하였다. Catenovulum agarivorans YM01과의 DNA-DNA hybridization 분석을 통하여 A28-5을 Catenovulum 속의 신종으로 분류하여Catenovulum jejuensis A28-5로 명명하였다. 이 균주의 액체배양으로부터 준비된 두 종류의 조효소를 이용한 xylan 또는 agarose와의 효소반응액을 Thin layer chromatography로 분석하여 각각 tetramer와 hexamer의 xylooligosaccharides와 (neo)agarooligosacchardes가 생산되는 것을 확인하였다.

Keywords

References

  1. Chi WJ, Chang YK, Hong SK. 2012. Agar degradation by microorganisms and agar-degrading enzymes. Appl. Microbiol. Biotechnol. 94: 917-930. https://doi.org/10.1007/s00253-012-4023-2
  2. Kobayashi R, Takisada M, Suzuki T, Kirimura K, Usami S. 1997. Neoagarobiose as a novel moisturizer with whitening effect. Biosci. Biotechnol. Biochem. 61: 162-163. https://doi.org/10.1271/bbb.61.162
  3. Christakopoulos P, Katapodis P, Kalogeris E, Kekos D, Macris BJ, Stamatis H, et al. 2003. Antimicrobial activity of acidic xylo-oligosaccharides produced by family 10 and 11 endoxylanases. Int. J. Biol. Macromol. 31: 171-175. https://doi.org/10.1016/S0141-8130(02)00079-X
  4. Kallel F, Driss D, Chaabouni SE, Ghorbel R. 2015. Biological activities of xylooligosaccharides generated from garlic straw xylan by purified xylanase from Bacillus mojavensis UEB-FK. Appl. Biochem. Biotechnol. 175: 950-964. https://doi.org/10.1007/s12010-014-1308-1
  5. Mario LP, Francisco R-V. 2014. The family Alteromonadaceae. The Prokaryotes. pp. 69-92. Springer-Verlag Berlin Heidelberg, New York.
  6. Yan S, Yu M, Wang Y, Shen C, Zhang XH. 2011. Catenovulum agarivorans gen. nov., sp. nov., a peritrichously flagellated, chainforming, agar-hydrolysing gammaproteobacterium from seawater. Int. J. Syst. Evol. Microbiol. 61: 2866-2873. https://doi.org/10.1099/ijs.0.027565-0
  7. Li DQ, Zhou YX, Liu T, Chen GJ, Du ZJ. 2015. Catenovulum maritimus sp. nov., a novel agarolytic gammaproteobacterium isolated from the marine alga Porphyra yezoensis Ueda (AST58-103), and emended description of the genus Catenovulum. Antonie Van Leeuwenhoek. 108: 427-434. https://doi.org/10.1007/s10482-015-0495-2
  8. Biely P. 1985. Microbial xylanolytic systems. Trends Biotechnol. 11: 286-290.
  9. Chi WJ, Park JS, Kwak MJ, Kim JF, Chang YK, Hong SK. 2013. Isolation and characterization of a novel agar-degrading marine bacterium, Gayadomonas joobiniege gen, nov, sp. nov., from the Southern Sea, Korea. J. Microbiol. Biotechnol. 23: 1509-1518. https://doi.org/10.4014/jmb.1308.08007
  10. Kim JH, Choi BH, Jo M, Kim SC, Lee PC. 2014. Flavobacterium faecale sp. nov., an agarase-producing species isolated from stools of Antarctic penguins. Int. J. Syst. Evol. Microbiol. 64: 2884-2890. https://doi.org/10.1099/ijs.0.059618-0
  11. Amel BD, Nawel B, Khelifa B, Mohammed G, Manon J, Salima KG, et al. 2016. Characterization of a purified thermostable xylanase from Caldicoprobacter algeriensis sp. nov. strain TH7C1(T). Carbohydr. Res. 419: 60-68. https://doi.org/10.1016/j.carres.2015.10.013
  12. Morais CG, Lara CA, Oliveira ES, Peter G, Dlauchy D, Rosa CA. 2015. Spencermartinsiella silvicola sp. nov., a yeast species isolated from rotting wood. Int. J. Syst. Evol. Microbiol. doi:10.1099/ijsem.0.000764.
  13. Lane DJ. 1991. 16S/23S rRNA sequencing. pp. 115-175. In Stackebrandt E, Goodfellow M (eds.), Nucleic acid techniques in bacterial systematics. Chichester, United Kingdom: John Wiley and Sons.
  14. Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
  15. Miller L, Berger T. 1985. Bacterial identification by gas chromatography of whole cell fatty acid. Hewlett-Packard Application note. pp. 228-241.
  16. Mesbah M, Premachandran U, Whitman WB. 1989. Precise measurement of the G+C content of deoxyribonucleic acid by highperformance liquid chromatography. Int. J. Syst. Bacteriol. 39: 159-167. https://doi.org/10.1099/00207713-39-2-159
  17. Temuujin U, Chi WJ, Lee SY, Chang YK, Hong SK. 2011. Overexpression and biochemical characterization of DagA from Streptomyces coelicolor A3(2): an endo-type ${\beta}$-agarase producing neoagarotetraose and neoagarohexaose. Appl. Microbiol. Biotechnol. 92: 749-759. https://doi.org/10.1007/s00253-011-3347-7
  18. Van Trappen S, Tan TL, Yang J, Mergaert J, Swings J. 2004. Altermonas stellipolaris sp. nov., a novel, budding, prosthecate bacterium from Antarctic seas, and emended description of the genus Alteromonas. Int. J. Syst. Evol. Microbiol. 54: 1157-1163. https://doi.org/10.1099/ijs.0.02862-0
  19. Shi X, Yu M, Yan S, Dong S, Zhang XH. 2012. Genome sequence of the thermostable-agarase-producing marine bacterium Catenovulum agarivorans YM01(T), which reveals the presence of a series of agarase-encoding genes. J. Bacteriol. 194: 5484. https://doi.org/10.1128/JB.01283-12
  20. Oh C, De Zoysa M, Kwon YK, Heo SJ, Affan A, Jung WK, et al. 2011. Complete genome sequence of the agarase-producing marine bacterium strain s89, representing a novel species of the genus Alteromonas. J. Bacteriol. 193: 5538. https://doi.org/10.1128/JB.05746-11
  21. Zhang P, Rui J, Du Z, Xue C, Li X, Mao X. 2016. Complete genome sequence of Agarivorans giluvs $WH0801^{(T)}$(T), and agarase-producing bacterium isolated from seaweed. J. Biotechnol. 219: 22-23. https://doi.org/10.1016/j.jbiotec.2015.12.007