References
- Song HS, Ramkrishna D. 2010. Issues with increasing bioethanol productivity: a model directed study. Korean J. Chem. Eng. 27: 576-586. https://doi.org/10.1007/s11814-010-0101-2
- Ha JH, Shah N, Ul-Islam M, Park JK. 2011. Potential of the waste from beer fermentation broth for bio-ethanol production without any additional enzyme, microbial cells and carbohydrates. Enzyme Microb. Technol. 49: 298-304. https://doi.org/10.1016/j.enzmictec.2011.04.016
- Ha JH, Gang MK, Khan T, Park JK. 2012. Evaluation of sediments of the waste from beer fermentation broth for bioethanol production. Korean J. Chem. Eng. 29: 1224-1231. https://doi.org/10.1007/s11814-011-0293-0
- Kadam KL. 2002. Environmental benefits on a life cycle basis of using bagasse-derived ethanol as a gasoline oxygenate in India. Energy Policy 30: 371-384. https://doi.org/10.1016/S0301-4215(01)00104-5
- Park SY, Kim MS, Kim K. 1996. Direct ethanol production from starch substrate by polyploid recombinant yeast secreting both alpha-amylase and glucoamylase. Korean J. Appl. Microbiol. Biotechnol. 24: 604-612.
- Kim MJ, Kim SK. 2012. Ethanol production by separate hydrolysis and fermentation and simultaneous saccharification and fermentation using Saccharina japonica. KSBB J. 27: 86-90. https://doi.org/10.7841/ksbbj.2012.27.2.086
- Kang M, Kim M, Yu B, Park JK. 2013. Saccharification and fermentation capability of the waste from beer fermentation broth. Korean Chem. Eng. Res. 51: 709-715. https://doi.org/10.9713/kcer.2013.51.6.709
- Hatami M, Younesi H, Bahramifar N. 2015. Simultaneous saccharification and fermentation (SSF) of rice cooker wastewater by using Aspergillus niger and Saccharomyces cerevisiae for ethanol production. J. Appl. Res. Wat. Wast. 2: 103-107.
- Han HJ, Li HX, Kim SJ. 2006. Ethanol production by synchronous saccharification and fermentation using food wastes. KSBB J. 21: 474-478.
- Fujii N, Oki T, Sakurai A, Suye S, Sakakibara M. 2001. Ethanol production from starch by immobilized Aspergillus awamori and Saccharomyces pastorianus using cellulose carriers. J. Ind. Microbiol. Biotechnol. 27: 52-57. https://doi.org/10.1038/sj.jim.7000162
- Kourkoutas Y, Bekatorou A, Banat IM, Marchant R, Koutinas AA. 2004. Immobilization technologies and support materials suitable in alcohol beverages production: a review. Food Microbiol. 21: 377-397. https://doi.org/10.1016/j.fm.2003.10.005
- Garcia-Martinez T, Peinado RA, Moreno J, Garcia-Garcia I, Mauricio JC. 2011. Co-culture of Penicillium chrysogenum and Saccharomyces cerevisiae leading to the immobilization of yeast. J. Chem. Technol. Biotechnol. 86: 812-817. https://doi.org/10.1002/jctb.2593
- Nyman J, Lacintra MG, Westman JO, Berglin M, Lundin M, Lennartsson PR, et al. 2013. Pellet formation of zygomycetes and immobilization of yeast. New Biotechnol. 30: 516-522. https://doi.org/10.1016/j.nbt.2013.05.007
- Groboillot A, Boadi DK, Poncelet D, Neufeld RJ. 1994. Immobilization of cells for application in the food industry. Crit. Rev. Biotechnol. 14: 75-107. https://doi.org/10.3109/07388559409086963
- Kim MS, Kim S, Ha BS, Park HY, BaeK SY, Yeo SH, et al. 2014. Diversity, saccharification capacity, and toxigenicity analyses of fungal isolates in Nuruk. Korean J. Mycol. 42: 191-200. https://doi.org/10.4489/KJM.2014.42.3.191
- Lakshmi MC, Jyothi P. 2014. Production and optimization of glucoamylase from Aspergillus oryzae NCIM 1212 using wheat bran, varying chemical parameters under solid state fermentation. Int. J. Curr. Microbiol. Appl. Sci. 3: 70-76.
- Ha SM, Choi HJ, Shin GY, Ryu BH, Joo WH. 2016. Fermentation of black garlic wine and its characteristics. J. Life Sci. 26: 796-804. https://doi.org/10.5352/JLS.2016.26.7.796
- Lee WS, Chen IC, Chang CH, Yang SS. 2012. Bioethanol production from sweet potato by co-immobilization of saccharolytic molds and Saccharomyces cerevisiae. Renew Energy 39: 216-222. https://doi.org/10.1016/j.renene.2011.08.024
-
Balkan B, Ertan F. 2005. Production and properties of
${\alpha}$ -amylase from Penicillium chrysogenum and its application in starch hydrolysis. Prep. Biochem. Biotechnol. 35: 169-178. https://doi.org/10.1081/PB-200054740 - Kang SC, Lee DG. 1999. Effects of loess on the mycelial pellet formation of phosphate dissolving fungus, Penicillium sp. GL-101 in the submerged culture. Korean J. Biotechnol. Bioeng. 14: 337-341.