DOI QR코드

DOI QR Code

Bio-capsule Formation for Synchronous Saccharification and Fermentation Process

동시당화발효공정을 위한 바이오캡슐 형성

  • Shin, Gyeong Yeon (Department of Biology and Chemistry, Changwon National University) ;
  • Choi, Hye Jung (Department of Biology and Chemistry, Changwon National University) ;
  • Kang, Yang-Rae (Il San Institute, Chilseo Ethanol Factory, Il San Trading Co., Ltd.) ;
  • Nam, Ki-Du (Il San Institute, Chilseo Ethanol Factory, Il San Trading Co., Ltd.) ;
  • Song, Ju Yeong (Department of Civil, Environmental and Chemical Engineering, Changwon National University) ;
  • Joo, Woo Hong (Department of Biology and Chemistry, Changwon National University)
  • 신경연 (창원대학교 생물학화학융합학부) ;
  • 최혜정 (창원대학교 생물학화학융합학부) ;
  • 강양래 (일산실업(주) 칠서에탄올공장부설기술연구소) ;
  • 남기두 (일산실업(주) 칠서에탄올공장부설기술연구소) ;
  • 송주영 (창원대학교 토목환경화공융합공학부) ;
  • 주우홍 (창원대학교 생물학화학융합학부)
  • Received : 2017.02.16
  • Accepted : 2017.05.21
  • Published : 2017.06.28

Abstract

For the production of bioethanol by the synchronous saccharification and fermentation (SSF) process, bio-capsule formation was attempted. Many saccharifying fungal strains and fermentative yeast strains were first screened. Aspergillus sp. BCNU 6200, Penicillium sp. BCNU 6201, and P. chrysogenum KACC 44363 were found to be excellent producers of saccharifying enzymes such as ${\alpha}$-amylase and glucoamylase. Saccharomyces cerevisiae IFO-M-07 showed the highest ethanol productivity among the tested strains. Secondly, we determined the optimal conditions for pellet formation, and those for bio-capsule formation. All the tested fungal strains formed pellets, and the optimal conditions for bio-capsule formation were $28^{\circ}C$ and 120 rpm. Lastly, SSF process was performed using a bio-capsule. An ethanol yield of 3.9% was achieved by using the Aspergillus sp. BCNU 6200 bio-capsule (Aspergillus sp. BCNU 6200 + S. cerevisiae IFO-M-07) at $30^{\circ}C$ with shaking at 120 rpm during the 10 days of incubation. The results provide useful information on the application of a bio-capsule in bioethanol production under the SSF process.

본 연구에서는 동시당화발효공정으로 바이오에탄올을 생산하기 위하여 바이오캡슐 형성을 시도하였다. 다수의 당화곰팡이 균주들과 발효 효모 균주들이 먼저 탐색되었다. Aspergillus sp. BCNU 6200, Penicillium sp. BCNU 6201 및 P. chrysogenum KACC 44363이 ${\alpha}$-amylase와 glucoamylase와 같은 당화 효소를 우수하게 생산하는 균주이었으며, Saccharomyces cerevisiae IFO-M-07이 조사된 균주 중에서 가장 에탄올 생산능이 높았다. 다음으로 pellet 형성 및 바이오 캡슐 형성을 위한 최적 조건을 평가하였다. 모든 조사된 곰팡이 모두 pellet을 형성하였으며, 바이오캡슐의 최적조건은 $28^{\circ}C$, 120 rpm이었다. 최종적으로 형성된 바이오캡슐을 이용하여 동시당화발효를 수행하여, Aspergillus sp. BCNU 6200의 바이오캡슐(Aspergillus sp. BCNU 6200 + S. cerevisiae IFO-M-07)이 10일간 발효시 $30^{\circ}C$, 120 rpm에서 3.9%의 에탄올을 생산함을 확인하였다. 본 실험 결과는 동시 당화발효 공정으로 바이오에탄올을 생산하는데 있어서 바이오캡슐을 활용함에 관한 유용한 정보를 제공하고 있다.

Keywords

References

  1. Song HS, Ramkrishna D. 2010. Issues with increasing bioethanol productivity: a model directed study. Korean J. Chem. Eng. 27: 576-586. https://doi.org/10.1007/s11814-010-0101-2
  2. Ha JH, Shah N, Ul-Islam M, Park JK. 2011. Potential of the waste from beer fermentation broth for bio-ethanol production without any additional enzyme, microbial cells and carbohydrates. Enzyme Microb. Technol. 49: 298-304. https://doi.org/10.1016/j.enzmictec.2011.04.016
  3. Ha JH, Gang MK, Khan T, Park JK. 2012. Evaluation of sediments of the waste from beer fermentation broth for bioethanol production. Korean J. Chem. Eng. 29: 1224-1231. https://doi.org/10.1007/s11814-011-0293-0
  4. Kadam KL. 2002. Environmental benefits on a life cycle basis of using bagasse-derived ethanol as a gasoline oxygenate in India. Energy Policy 30: 371-384. https://doi.org/10.1016/S0301-4215(01)00104-5
  5. Park SY, Kim MS, Kim K. 1996. Direct ethanol production from starch substrate by polyploid recombinant yeast secreting both alpha-amylase and glucoamylase. Korean J. Appl. Microbiol. Biotechnol. 24: 604-612.
  6. Kim MJ, Kim SK. 2012. Ethanol production by separate hydrolysis and fermentation and simultaneous saccharification and fermentation using Saccharina japonica. KSBB J. 27: 86-90. https://doi.org/10.7841/ksbbj.2012.27.2.086
  7. Kang M, Kim M, Yu B, Park JK. 2013. Saccharification and fermentation capability of the waste from beer fermentation broth. Korean Chem. Eng. Res. 51: 709-715. https://doi.org/10.9713/kcer.2013.51.6.709
  8. Hatami M, Younesi H, Bahramifar N. 2015. Simultaneous saccharification and fermentation (SSF) of rice cooker wastewater by using Aspergillus niger and Saccharomyces cerevisiae for ethanol production. J. Appl. Res. Wat. Wast. 2: 103-107.
  9. Han HJ, Li HX, Kim SJ. 2006. Ethanol production by synchronous saccharification and fermentation using food wastes. KSBB J. 21: 474-478.
  10. Fujii N, Oki T, Sakurai A, Suye S, Sakakibara M. 2001. Ethanol production from starch by immobilized Aspergillus awamori and Saccharomyces pastorianus using cellulose carriers. J. Ind. Microbiol. Biotechnol. 27: 52-57. https://doi.org/10.1038/sj.jim.7000162
  11. Kourkoutas Y, Bekatorou A, Banat IM, Marchant R, Koutinas AA. 2004. Immobilization technologies and support materials suitable in alcohol beverages production: a review. Food Microbiol. 21: 377-397. https://doi.org/10.1016/j.fm.2003.10.005
  12. Garcia-Martinez T, Peinado RA, Moreno J, Garcia-Garcia I, Mauricio JC. 2011. Co-culture of Penicillium chrysogenum and Saccharomyces cerevisiae leading to the immobilization of yeast. J. Chem. Technol. Biotechnol. 86: 812-817. https://doi.org/10.1002/jctb.2593
  13. Nyman J, Lacintra MG, Westman JO, Berglin M, Lundin M, Lennartsson PR, et al. 2013. Pellet formation of zygomycetes and immobilization of yeast. New Biotechnol. 30: 516-522. https://doi.org/10.1016/j.nbt.2013.05.007
  14. Groboillot A, Boadi DK, Poncelet D, Neufeld RJ. 1994. Immobilization of cells for application in the food industry. Crit. Rev. Biotechnol. 14: 75-107. https://doi.org/10.3109/07388559409086963
  15. Kim MS, Kim S, Ha BS, Park HY, BaeK SY, Yeo SH, et al. 2014. Diversity, saccharification capacity, and toxigenicity analyses of fungal isolates in Nuruk. Korean J. Mycol. 42: 191-200. https://doi.org/10.4489/KJM.2014.42.3.191
  16. Lakshmi MC, Jyothi P. 2014. Production and optimization of glucoamylase from Aspergillus oryzae NCIM 1212 using wheat bran, varying chemical parameters under solid state fermentation. Int. J. Curr. Microbiol. Appl. Sci. 3: 70-76.
  17. Ha SM, Choi HJ, Shin GY, Ryu BH, Joo WH. 2016. Fermentation of black garlic wine and its characteristics. J. Life Sci. 26: 796-804. https://doi.org/10.5352/JLS.2016.26.7.796
  18. Lee WS, Chen IC, Chang CH, Yang SS. 2012. Bioethanol production from sweet potato by co-immobilization of saccharolytic molds and Saccharomyces cerevisiae. Renew Energy 39: 216-222. https://doi.org/10.1016/j.renene.2011.08.024
  19. Balkan B, Ertan F. 2005. Production and properties of ${\alpha}$-amylase from Penicillium chrysogenum and its application in starch hydrolysis. Prep. Biochem. Biotechnol. 35: 169-178. https://doi.org/10.1081/PB-200054740
  20. Kang SC, Lee DG. 1999. Effects of loess on the mycelial pellet formation of phosphate dissolving fungus, Penicillium sp. GL-101 in the submerged culture. Korean J. Biotechnol. Bioeng. 14: 337-341.