• Title/Summary/Keyword: agarooligosaccharide

Search Result 9, Processing Time 0.029 seconds

Production of Agarooligosaccharides using of Agarase from marine Bacterium Bacillus cereus ASK202 (해양세균 Bacillus cereus ASK202가 생산하는 Agarase를 이용한 Agarooligosaccharides의 생산)

  • 김봉조;하순득;임동중;송창문;공재열
    • KSBB Journal
    • /
    • v.13 no.5
    • /
    • pp.524-529
    • /
    • 1998
  • An agarase was partially purified from the culture broth of marine bacterium Bacillus cereus ASK202. Optimal pH and temperature of this agarase were found to be 7.0 and 40$^{\circ}C$, respectively. The maximum productivity of agarooligosaccharides was obtained from 0.3 %(w/v) agar by using of 1 unit agarase. As the results of TLC and HPLC analysis, these oilgosaccharides consisted of neoagarobiose, neoagarotetraose and neoagarohexaose. Under the optimal reaction conditions, 77.5 %(w/v) neoagarobiose and 6.2 %(w/v) neoagarotetraose were produced from agar and the conversion yield of total agarooligosaccharides was 83.7 %(w/v) after for 2 h reaction at 40$^{\circ}C$.

  • PDF

Preparation and Characteristics of Agarooligosaccharide (한천 올리고당의 제조 및 특성)

  • Cho, Suk-Hyung;Cho, Jea-Chul;Kim, Young-Jun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11b
    • /
    • pp.1010-1013
    • /
    • 2010
  • 한천 올리고당은 효소인 아가라제에 의하여 제조하였으며 제조에 있어서 효소의 농도, 반응 온도 등에 따른 최적 제조조건을 규명하였으며 한천 올리고당을 GPC로 분자량을 측정하였을 때 분자량이 약 4,200 Da이었다. 또한 한천올리고당의 항산화 작용 및 아질산 소거능을 측정한 결과 항산화 효과가 비타민 C보다는 약간 낮지만 68%정도의 비교적 높은 항산화 활성을 나타내었으며 한천 올리고당이 이산화질소의 과잉생성을 억제하여 정상레벨로 유지하는 것을 알 수 있었다.

  • PDF

Continuous Production of Agarooligosaccharides Using Packed-Bed Reactor (Packed-Bed 반응기를 이용한 한천올리고당의 연속생산)

  • 임동중;김종덕;강양순;공재열
    • KSBB Journal
    • /
    • v.16 no.4
    • /
    • pp.398-402
    • /
    • 2001
  • Enzymatic hydrolysis of agar was carried out continuously to produce agarooligosaccharides by immobilized agarase in Packed-Bed Reactor. The reactor was constructed using a acryl tube with an internal diameter of 10 mm and a useful height of 140 mm. The Packed-Bed Reactor was 11 mL reactor volume as its length : diameter ratio was 14 : 1. The operation condition of reaction was performed with an 1 g/L agar concentration at 40$^{\circ}C$, 10 mM MOPS buffer(pH 7.0) and with the flow rate 3 mL∼48 mL/h at a dilution rate of 1.09∼5.45 h$\^$-1/. The hydrolysis products was identified DP6, DP4 and DP2 by HPLC. The conversion rate of agar was about 80% and amount of total agarooligosaccharide was 0.88 mg/mL at Packed-Bed Reactor.

  • PDF

Immobilization of Agarase for the Agarooligosaccharide Production (한천올리고당의 생산을 위한 한천분해효소의 고정화)

  • 임동중;김봉조;배승권;김종덕;공재열
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.3
    • /
    • pp.208-214
    • /
    • 1999
  • The condition for immobilization of the partially purified agarase from Bacillus cereus ASK202 and the properties of the immobilized enzyme have been investigated. Agarase was immobilized on various supports by entrapment method. The enzyme immobilized on Na-alginate bead showed the highest activity among those studied. The optimal reaction conditions of the immobilized agarase were obtained in 3%(w/v) Na-alginate for the matrix, bead diameter of 2.5mm, 1 unit of agarase solution and 1.0%(w/v) calcium chloride solution. The optimum pH and temperature of the immobilized agarase were pH and temperature of the immobilized agarase were pH 7.0 and 4$0^{\circ}C$, respectively. Km and Vmax values were 0.5mg/ml.min, respectively. The immobilized agarase conerted agar to agarobiose, and their total conversion ratio under the optimal condition was 89%.

  • PDF

The Classification, Origin, Collection, Determination of Activity, Purification, Production, and Application of Agarases (Agarase의 분류, 기원, 확보, 활성파악, 분리정제, 생산 및 응용)

  • Lee, Dong-Geun;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.22 no.2
    • /
    • pp.266-280
    • /
    • 2012
  • Agar is a cell wall component of macro red algae that can be hydrolyzed by agarase. Agarases are classified into ${\alpha}$-agarase (E.C. 3.2.1.158) and ${\beta}$-agarase (E.C. 3.2.1.81), in accordance with their cleavage pattern, and can be grouped in the glycoside hydrolase (GH)-16, -58, -86, -96, and -118 family according to the amino acid sequences of the proteins. Many agarases and/or their genes have been detected, isolated, and recombinantly expressed from bacteria, and metagenomes have their origins in sea and terrestrial environments. Products of agarases, agarooligosaccharides and neoagarooligosaccharides, represent wide functions such as antitumor, immune stimulation, antioxidation, prebiotic, hepa-protective, antibacterial, whitening, and moisturizing effects; hence, broad applications would be possible in the food industry, cosmetics, and medical fields. In addition, agarases are also used as a tool enzyme for research. This paper reviews the sources, purifications and detection methods, and application fields of agarases. The role of agarases in agar metabolism and the function of their enzymatic products are also surveyed.

Characterization of α-agarase from Alteromonas sp. SH-1 (Alteromonas sp. SH-1균 유래의 α-agarase의 특성조사)

  • Lee, Sol-Ji;Shin, Da-Young;Kim, Jae-Deog;Lee, Dong-Geun;Lee, Sang-Hyeon
    • KSBB Journal
    • /
    • v.31 no.2
    • /
    • pp.113-119
    • /
    • 2016
  • A novel agar-degrading marine bacterium, SH-1 strain, was isolated from seashore of Namhae at Gyeongnam province, Korea. The SH-1 strain exhibited 98% similarity with Alteromonas species based on 16S rDNA sequencing and named as Alteromonas sp. SH-1. Alteromonas sp. SH-1 showed agarase activity of 348.3 U/L (1.67 U/mg protein). The molecular masses of the enzymes were predicted as about 85 kDa and 110 kDa by SDS-PAGE and zymogram. The enzymatic activity was optimal at $30^{\circ}C$ and the relative agarase activity was decreased as temperature increase from $30^{\circ}C$ and thus about 90% and 70% activities were shown at $40^{\circ}C$ and $50^{\circ}C$, respectively. The optimum pH was 6.0 for agarase activity in 20 mM Tris-HCl buffer and activities were less than 70% and 85% activity at pH 5.0 and pH 7.0, respectively, compared with that at pH 6. Agarase activity has remained over 90% at $20^{\circ}C$ after 1.5 hour exposure at this temperature. However, its activity was less than 60% at $30^{\circ}C$ after 0.5 h exposure at this temperature. The enzymes produced agarooligosaccharides such as agaropentaose and agarotriose from agarose, indicating that the agarases are ${\alpha}$-agarases. Thus, Alteromonas sp. SH-1 and its agarases would be useful for the industrial production of agarooligosaccharides which are known as having anticancer and antioxidation activities.

Physicochemical Properties of Agarooligosaccharides for Using as Food Stuffs (식품소재로서의 한천올리고당의 이화학적 특성)

  • Kim, Bong-Jo;Song, Chang-Moon;Ha, Soon-Duck;Hwang, Sun-Hee;Kim, Hak-Ju;Bae, Seoung-Kwon;Kong, Jai-Yul
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.284-290
    • /
    • 2000
  • A marine bacterium Bacillus cereus ASK202 showing a high agar degrading activity, was incubated in the culture medium containing agar. After incubation for 30 hr, the productivity of agarase in the culture broth reached to maximum value (160.8 units/L). As the results of TLC and HPLC analysis, agarooligosaccharides (degrees of polymerization 2, 4 and 6) were produced from the hydrolysis of agar by using the crude agarase. Physical and chemical properties of agarooligosaccharides were compared with the manufactured products of other oligosaccharides (fructooligosaccharide; isomaltooligosaccharide; maltotetraoligosaccharide) and agarooligosaccharides showed higher viscosity, higher contents of oligosaccharides, higher stability at low pH's and higher temperatures, and lower sweetness than other oligosaccharides.

  • PDF

Isolation and Characterization of an Agar-hydrolyzing Marine Bacterium, Pseudoalteromonas sp. H9, from the Coastal Seawater of the West Sea, South Korea (서해안 해수로부터 분리한 한천분해 해양미생물 Pseudoalteromonas sp. H9의 동정 및 특성 연구)

  • Chi, Won-Jae;Youn, Young Sang;Kim, Jong-Hee;Hong, Soon-Kwang
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.2
    • /
    • pp.134-141
    • /
    • 2015
  • An agarolytic marine bacterium (H9) was isolated from the coastal seawater of the West Sea, South Korea. The isolate, H9, was gram-negative and rod-shaped with a smooth surface and polar flagellum. Cells grew at 20-30℃, between pH 5.0 and 9.0, and in ASW-YP (Artificial Sea Water-Yeast extract, Peptone) media containing 1-5% (w/v) NaCl. The G+C content was 41.56 mol%. The predominant isoprenoid quinone in strain H9 was ubiquinone-8. The major fatty acids (>10%) were C16:1ω7c (34.3%), C16:0 (23.72%), and C18:1ω7c (13.64%). Based on 16S rRNA gene sequencing, and biochemical and chemotaxonomic characterization, the strain was designated as Pseudoalteromonas sp. H9 (=KCTC23887). In liquid culture supplemented with 0.2% agar, the cell density and agarase activity reached a maximum level of OD = 4.32 (48 h) and OD = 3.87 (24 h), respectively. The optimum pH and temperature for the extracellular crude agarases of H9 were 7.0 and 40℃, respectively. Thin-layer chromatography analysis of the agarase hydrolysis products revealed that the crude agarases hydrolyze agarose into neoagarotetraose and neoagarohexaose. Therefore, the new agar-degrading strain, H9, can be applicable for the production of valuable neoagarooligosaccharides and for the complete degradation of agar in bio-industries.

Identification and Characterization of an Agarase- and Xylanse-producing Catenovulum jejuensis A28-5 from Coastal Seawater of Jeju Island, Korea (제주 연안해수로부터 한천 분해 효소 및 자일란 분해 효소를 생산하는 Catenovulum jejuensis A28-5의 동정 및 특성 규명)

  • Kim, Da Som;Jeong, Ga Ram;Bae, Chang Hwan;Yeo, Joo-Hong;Chi, Won-Jae
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.2
    • /
    • pp.168-177
    • /
    • 2017
  • Strain A28-5, which can degrade xylan and agar in solid medium, was isolated from a coastal seawater sample collected from Jeju Island, South Korea. This strain was found to be a gram-negative, $Na^+$-requiring bacterial strain with a polar flagellum for motility. Additionally, the strain was tolerant to antibiotics such as ampicillin and thiostrepton. The G+C content of the genome was 43.96% and menaquinone-7 was found to be the predominant quinone. Major fatty acids constituting the cell wall of the strain were $C_{16:1}$ ${\omega}7c/iso-C_{15:0}$ 2-OH (23.32%), $C_{16:0}$ (21.83%), and $C_{18:1}$ ${\omega}7c$ (17.98%). The 16S rRNA gene sequence of the strain showed the highest similarity (98.94%) to that of Catenovulum agarivorans YM01, which was demonstrated by constructing a neighbor-joining phylogenetic tree. A28-5 was identified as a novel species of the genus Catenovulum via DNA-DNA hybridization with Catenovulum agarivorans YM01, and thus was named as Catenovulum jejuensis A28-5. The formation of tetramers and hexamers of xylooligosaccharides and (neo)agarooligosaccharides, respectively, were confirmed by thin-layer chromatography analysis using an enzyme reaction solution containing xylan or agarose with two crude enzymes prepared from the liquid culture of the strain.