DOI QR코드

DOI QR Code

Statistical Analysis of Synthesis of Gamma-alumina (γ-Al2O3) Nanoparticles Using Reverse Micelles

역미셀을 이용한 감마-알루미나 나노입자 합성에 대한 통계적 분석

  • Lee, Kil Woo (Department of Chemical & Biomolecular Engineering, Seoul National University of Science & Technology) ;
  • Yoo, Kye Sang (Department of Chemical & Biomolecular Engineering, Seoul National University of Science & Technology)
  • 이길우 (서울과학기술대학교 화공생명공학과) ;
  • 유계상 (서울과학기술대학교 화공생명공학과)
  • Received : 2017.04.06
  • Accepted : 2017.05.02
  • Published : 2017.06.10

Abstract

An experimental design method was used to optimize the synthesis of gamma-alumina with a superior thermal stability using the reverse micelle method. First, twelve experimental conditions were derived by using the mixture design method to optimize conditions for the ratio of surfactant, water and oil, which are main factors in the synthesis process. When the particles synthesized by reverse micelle method were calcined at $900^{\circ}C$ under the designed condition, they all had gamma-alumina crystal structure although there were differences in particle sizes. The coefficient of determination of the second-order regression model using the derived experimental results was 93.68% and the P-value was 0.002. The synthesis conditions forgamma-alumina with various particle sizes were presented using surface and contour lines. As a result, it was calculated that the smallest particle size of about 2.8 nm was synthesized when the ratio of surfactant/water/oil was 0.3450/0.0729/0.5821.

역미셀법을 이용하여 열적 안정성이 우수한 감마-알루미나의 합성 공정을 최적화하기 위하여 실험계획법을 사용하였다. 먼저 합성공정에 주 요소인 계면활성제, 물 및 오일의 비에 대한 최적의 실험조건을 설계하기 위하여 혼합물 실험법을 이용하여 12가지 실험조건을 도출하였다. 설계된 조건에서 역미셀법을 이용하여 합성한 입자를 $900^{\circ}C$에서 소성한 결과 입자의 크기에 차이는 있었지만 모두 감마-알루미나 결정구조를 가졌다. 도출된 실험결과를 이용하여 계산된 2차 회귀모델의 결정계수는 93.68%이었으며, P- 값이 0.002로서 유의하다고 할 수 있다. 다양한 입자크기를 가지는 감마-알루미나의 합성조건을 모든 범위에서 대하여 표면도와 등고선도를 이용하여 제시하였다. 그 결과 Surfactant/Water/Oil의 질량비가 0.3450/0.0729/0.5821인 조건에서 합성할 때 약 2.8 nm의 가장 작은 입자가 합성되는 것으로 계산되었다.

Keywords

References

  1. H. Arai and M. Machida, Thermal stabilization of catalyst supports and their application to high-temperature catalytic combustion, Appl. Catal. A, 138, 161-176 (1996). https://doi.org/10.1016/0926-860X(95)00294-4
  2. X. Wang. G. Lu, Y. Guo, Y. Wang, and Y. Guo, Preparation of high thermal-stabile alumina by reverse microemulsion method, Mater. Chem. Phys., 90, 225-229 (2005). https://doi.org/10.1016/j.matchemphys.2004.11.012
  3. S. J. Wilson, The dehydration of boehmite, ${\gamma}$-AlOOH, to ${\gamma}$ -$Al_2O_3$ J. Solid State, 30, 247-255 (1979). https://doi.org/10.1016/0022-4596(79)90106-3
  4. F. W. Dynys and J. W. Halloran, Alpha alumina formation in alum derived gamma alumina, J. Am. Ceram. Soc., 65, 442-448 (1982). https://doi.org/10.1111/j.1151-2916.1982.tb10511.x
  5. B. Xu, T. Xiao, Z. Yan, X. Sun, J. Sloan, S. L. Gonzalez-Cortes, F. Alshahrani, and M. L. H. Green, Synthesis of mesoporous alumina with highly thermal stability using glucose template in aqueous system, Microporous Mesoporous Mater., 91, 293-295 (2006). https://doi.org/10.1016/j.micromeso.2005.12.007
  6. N. Yao, G. Xiong, Y. Zhang, M. He, and W. Yang, Preparation of novel uniform mesoporous alumina catalysts by the sol-gel method, Catal. Today, 68, 97-109 (2001). https://doi.org/10.1016/S0920-5861(01)00296-6
  7. Z.-X. Zhang, P. Bai, B. Xu, and Z.-F. Yan, Synthesis of mesoporous alumina TUD-1 with high thermostability, J. Porous Mater., 13, 245-250 (2006). https://doi.org/10.1007/s10934-006-8011-8
  8. N. Zilkova, A. Zukal, and J. Cejka, Synthesis of organized mesoporous alumina templated with ionic liquids, Microporous Mesoporous Mater., 95, 176-179 (2006). https://doi.org/10.1016/j.micromeso.2006.05.016
  9. J. H. Kim, K. Y. Jung, K. Y. Park, and S. B. Cho, Characterization of mesoporous alumina particles prepared by spray pyrolysis of $Al(NO_3)_2{\cdot}9H_2O$ precursor: Effect of CTAB and urea, Microporous Mesoporous Mater., 128, 85-90 (2010). https://doi.org/10.1016/j.micromeso.2009.08.008
  10. M. I. Martin, L. S. Gomez, O. Milosevic, and M. E. Rabanal, Nanostructured alumina particles synthesized by the Spray Pyrolysis method: Microstructural and morphological analyses, Ceram. Int., 36, 767-772 (2010). https://doi.org/10.1016/j.ceramint.2009.10.013
  11. H. F. Eicke and G. D. Parfitt, Interfacial Phenomena in Apolar Media, 41-49, Marcel Dekker, New York, USA (1986).
  12. M. Boutonnet, J. Kizling, P. Stenius, and G. Marie, The preparation of monodisperse colloidal metal particles from microemulsions, Colloids Surf., 5, 209-225 (1982). https://doi.org/10.1016/0166-6622(82)80079-6
  13. J. H. Fendler, Atomic and molecular clusters in membrane mimetic chemistry, Chem. Rev., 87, 877-899 (1987). https://doi.org/10.1021/cr00081a002
  14. L. Motte, C. Petit, P. Lixon, L. Boulanger, and M. P. Pileni, Synthesis of cadmium sulfide in situ in cadmium bis (2-ethylhexyl) sulfosuccinate reverse micelle: Polydispersity and photochemical reaction, Langmuir, 8, 1049-1053 (1992). https://doi.org/10.1021/la00040a006
  15. M. P. Pileni, Nanosized particles made in colloidal assemblies, Langmuir, 13, 3266-3276 (1997). https://doi.org/10.1021/la960319q
  16. T. Kawai, A. Fujino, and K. Kon-No, Synthesis of monodisperse $ZrO_2$ particles in polyoxyethylated nonionic reversed micelles, Colloids Surf. A, 109, 245-253 (1996). https://doi.org/10.1016/0927-7757(96)03458-9
  17. K. Kon-No, Synthesis of monodisperse $GeO_2$ particles in reversed micellar systems, in: E. Pelizzetti (Ed.), Fine Particles Science and Technology, 431-442, Kluwer Academic, Dordrecht, Netherlands (1996).
  18. R. E. Walpole, K. E. Ye, Raymond, H. Myers, and S. L. Myers, Probability and Statistics for Engineers and Scientists, 9th ed., 639-652, Prentice Hall, Boston, MA, USA (2012).
  19. R. L. Mason, R. F. Gunst, and J. L. Hess, Statistical Design and Analysis of Experiments, with Applications to Engineering and Science, 2nd ed., 568-597, Wiley-Interscience, NJ, USA (2003).
  20. T. Kawai, Y. Usui, and K. Kon-No, Synthesis and growth mechanism of $GeO_2$ particles in AOT reversed micelles, Colloids Surf. A, 149, 39-47 (1999). https://doi.org/10.1016/S0927-7757(98)00327-6
  21. W.-I. Chang, S.-W. Kang, and K.-R. Lee, Formation of $TiO(OH)_2$ ultrafine particles by reverse micelle, J. Korean Ceram. Soc., 35, 594-602 (1998).