DOI QR코드

DOI QR Code

Analysis of Sintered Density for Uranium Oxide Pellet Using Spectrophotometer

분광기를 이용한 우라늄산화물(UOX) 소결체의 밀도 분석

  • Received : 2017.03.27
  • Accepted : 2017.04.25
  • Published : 2017.06.10

Abstract

The sintered density of uranium oxide pellets for pressurized water reactors is generally analyzed with pellet's samples completed with the sintering process. In this paper, the sintered density was analyzed by the newly developed method measuring the chromatography of ammonium diuranate, a precursor of uranium oxide, by a spectrophotometer (CM-5, Konica Minolta) before completing the sintering process. As a result of the sintered density analysis based on the brightness, color coordinate values (L, a, b) obtained from five ammonium diuranate samples by a spectrophotometer and the trend line of sintered density analyzed by a previous method, the sintered density with respect to the L value was observed with 0.9967 of the decision factor $R^2$. In case of a value, $R^2$ value was 0.9534 indicating lower reliability than that of the L value. However, b value with $R^2$ value of 0.4349 showed a very low correlation.

원자력연료 제조공정에서 생산되는 우라늄산화물(uranium oxide, UOX) 소결체의 밀도 분석은 일반적으로 소결공정을 거친 후, 소결체의 표본을 가지고 측정한다. 본 연구에서는 우라늄산화물의 중간물질인 중우라늄산암모늄(ammonium diuranate)의 색도를 분광기(spectrophotometer)로 측정함으로써 소결공정 이전에 우라늄산화물 소결체의 밀도를 분석해 보았다. 중우라늄산암모늄 표준 샘플 5개를 통해 얻은 명도 및 색의 좌푯(L, a, b)값과 통상적인 방법으로 얻은 소결체 밀도의 상관관계 추세선을 바탕으로 표적 샘플의 밀도를 분석한 결과, L 값에 대한 소결체의 밀도 분석이 결정계수 $R^2$ 값 0.9967로 가장 신뢰성이 높게 나왔음을 확인하였다. a 값에 대한 결정계수 $R^2$ 값은 0.9534로 상관관계가 높은 편이나 L 값보다는 낮았다. 이에 반해 b 값에 대한 결정계수 $R^2$ 값은 0.4349로 상관관계가 거의 없었다.

Keywords

References

  1. J. H. Park, Nuclear Chemical Engineering, 1st ed., 397-484, Hans House, Seoul, Republic of Korea (2012).
  2. B. K. Kim, I. S. Jang, S. T. Hwang, J. H. Park, E. H. Kim, J. J. Park, and C. S. Choi, Nuclear fuel powder ($UO_2$) manufacturing technology, Chem. Ind. Technol., 9, 375-378 (1991).
  3. K. S. Kim, K. W. Song, K. W. Kang, J. H. Kim, and Y. M. Kim, Properties of compacts and pellets made using bimodal-sized $UO_2$ powder, J. Korean Nucl. Soc., 31, 608-617 (1999).
  4. P. G. Alfredson, Pilot Plant Development of Processes for the Production of Nuclear Grade Uranium Oxide, AAEC/E245, Australian Atomic Energy Commission, Lucas Heights, Australia (1972).
  5. D. H. Jung, S. J. Lee, B. J. Lee, K. L. Jeon, J. N. Lee, J. M. Suh, I. K. Hwang, D. L. Jeong, and Y. H. Jo, Uranium dioxide fuel pellet including Ni oxide and Al oxide and the manufacturing method thereof, KR Patent, 10-1182290 (2012).
  6. S. Lowell, J. E. Shields, M. A. Thomas, and M. Thommes, Characterization of Porous Solids and Powders: Surface area, Pore Size and Density, 326-337, Springer, Dordrecht, Netherlands (2004).
  7. R. M. German, Sintering: From Empirical Observations to Scientific Principles, 102-104, Butterworth-Heinemann, Oxford, UK (2014).
  8. R. M. German, Sintering Theory and Practice, Wiley, NY, USA (1996).
  9. A. Kazuhiro and H. Shinichi, Method for measuring sintering degree of uranium dioxide powder, JP Patent, 1989-146181 (1989).
  10. S. B. Lee, H. J. Kang, and M. S. Park, Chromaticity analysis of natural dyes extracted from sappan wood, gardenia, and mugwort, Appl. Chem. Eng., 27, 325-329 (2016). https://doi.org/10.14478/ace.2016.1044
  11. D. W. Green and R. H. Perry, Perry's Chemical Engineers' Handbook, 8th ed., 2-27, McGraw Hill, NY, USA (2007).
  12. M. J. O'Neil, P. E. Heckelman, C. B. Koch, K. J. Roman, C. M. Kenny, and M. R. D'Arecca, The Merck Index, 14th ed., 1694-1695, Merck & Co., Inc, NJ, USA (2006).
  13. J. L. Woolfrey, The Preparation and Calcination of Ammonium Uranates, AAEC/TM476, Australian Atomic Energy Commission, Sydney, Australia (1968).