DOI QR코드

DOI QR Code

Ammonia Adsorption Capacity of Zeolite X with Different Cations

Zeolite X의 양이온에 따른 암모니아 흡착 성능 연구

  • Park, Joonwoo (Energy & Environment R&D Center in E&Chem Solution Corporation) ;
  • Seo, Youngjoo (Energy & Environment R&D Center in E&Chem Solution Corporation) ;
  • Ryu, Seung Hyeong (Energy & Environment R&D Center in E&Chem Solution Corporation) ;
  • Kim, Shin Dong (Energy & Environment R&D Center in E&Chem Solution Corporation)
  • 박준우 ((주)이앤켐솔루션, 에너지.환경연구소) ;
  • 서영주 ((주)이앤켐솔루션, 에너지.환경연구소) ;
  • 류승형 ((주)이앤켐솔루션, 에너지.환경연구소) ;
  • 김신동 ((주)이앤켐솔루션, 에너지.환경연구소)
  • Received : 2017.04.12
  • Accepted : 2017.05.12
  • Published : 2017.06.10

Abstract

Zeolite X with Si/Al molar ratio = 1.08~1.20 was produced using a hydrothermal synthesis method. Ion-exchanged zeolite X samples were then prepared by using metal nitrate solutions containing $Mg^{2+}$ or $Cu^{2+}$. For all zeolite X samples, X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectrometry (EDS) were used to identify the change in crystal structure. The analysis of ammonia adsorption capability of zeolite X samples was conducted through the ammonia temperature-programmed desorption ($NH_3$-TPD) method. From XRD results, the prepared zeolite X samples maintained the Faujasite (FAU) structure regardless of cation contents in zeolite X, but the crystallinity of zeolite X containing $Mg^{2+}$ and $Cu^{2+}$ cations decreased. The distribution of cation contents in zeolite X was identified via EDS analysis. $NH_3$-TPD analysis showed that the $NH_3$ adsorption capacity of $Mg^{2+}$- and $Cu^{2+}$-zeolite X were 1.76 mmol/g and 2.35 mmol/g, respectively while the $Na^+$-zeolite X was 3.52 mmol/g ($NH_3/catalyst$). $Na^+$-zeolite X can thus be utilized as an adsorbent for the removal of ammonia in future.

Si/Al 몰비율이 1.08~1.20를 가진 제올라이트 X를 수열합성반응을 이용하여 제조한 후, $Mg^{2+}$ 또는 $Cu^{2+}$을 지닌 금속질산염용액으로 이온교환을 하여 이온 교환된 제올라이트 X를 준비하였다. 모든 준비된 제올라이트 X 시료들에 대해 XRD, SEM, EDS를 이용하여 제올라이트의 결정 구조 변화를 확인하였으며, 암모니아 승온 탈착법($NH_3$-TPD)을 통해 시료의 암모니아 흡착능력에 대한 분석을 진행하였다. XRD 결과, 준비된 제올라이트 X는 양이온성분에 상관없이 Faujasite (FAU) 결정상을 유지하였지만, $Mg^{2+}$$Cu^{2+}$로 이온교환된 제올라이트 X에 대한 결정화도는 감소되었다. EDS분석결과, 이온 교환된 제올라이트 X시료들 안에 각각의 양이온이 분포되어 있는 것을 확인할 수 있었다. $NH_3$-TPD 분석결과 $Mg^{2+}$-와 $Cu^{2+}$-제올라이트 X의 암모니아 흡착능은 각각 1.76 mmol/g과 2.35 mmol/g이었으나, $Na^+$-제올라이트 X의 암모니아 흡착능은 3.52 mmol/g ($NH_3/catalyst$)으로 확인되었다. 향후 암모니아를 제거하기 위한 흡착제로서 $Na^+$-제올라이트 X가 활용될 가능성이 높다고 사료된다.

Keywords

References

  1. C. G. Kim, Removal of ammonium and nitrate nitrogens from wastewater using zeolite. J. Korea Org. Resour. Recycl. Assoc., 24, 59-63 (2016).
  2. X. Yang, X. Wu, H. Hao, and Z. He, Mechanisms and assessment of water eutrophication. J. Zhejiang Univ. Sci. B, 9, 197-209 (2008). https://doi.org/10.1631/jzus.B0710626
  3. J. B. Seo and K. H. An, Effect of operational parameters on the ammonia stripping, J. Korean Soc. Environ. Eng., 28, 935-939 (2006).
  4. S. Jin and E. Y. Lee, Screening and isolation of ammonia removal microorganism for the improvement of livestock environment, Kor. J. Microbiol. Biotechnol., 37, 408-412 (2009).
  5. D. H. Lee and M. G. Lee, Ammonia nitrogen removal by cation exchange resin, J. Environ. Sci., 11, 263-269 (2002).
  6. M. P. Bernal and J. M. Lopez-Real, Natural zeolites and sepiolite as ammonium and ammonia adsorbent materials, Bioresour. Technol., 43, 27-33 (1993). https://doi.org/10.1016/0960-8524(93)90078-P
  7. S. Jorgensen, Recovery of ammonia from industrial waste water, Water Res., 9, 1187-1191 (1975). https://doi.org/10.1016/0043-1354(75)90119-0
  8. S. E. Jorgensen, O. Libor, K. Lea Graber, and K. Barkacs, Ammonia removal by use of clinoptilolite, Water Res., 10, 213-224 (1976). https://doi.org/10.1016/0043-1354(76)90130-5
  9. A. Hedstrom and L. Rastas Amofah, Adsorption and desorption of ammonium by clinoptilolite adsorbent in municipal wastewater treatment systems, J. Environ. Eng. Sci., 7, 53-61 (2008). https://doi.org/10.1139/S07-029
  10. A. M. Cardoso, M. B. Horn, L. S. Ferret, C. M. N. Azevedo, and M. Pires, Integrated synthesis of zeolites 4A and Na-P1 using coal fly ash for application in the formulation of detergents and swine wastewater treatment, J. Hazard. Mater., 287, 69-77 (2015). https://doi.org/10.1016/j.jhazmat.2015.01.042
  11. L. Lin, Z. Lei, L. Wang, X. Liu, Y. Zhang, C. Wan, D.-J. Lee, and J. H. Tay, Adsorption mechanisms of high-levels of ammonium onto natural and NaCl-modified zeolites, Sep. Purif. Technol., 103, 15-20 (2013). https://doi.org/10.1016/j.seppur.2012.10.005
  12. X. Zhang, D. Tang, M. Zhang, and R. Yang, Synthesis of NaX zeolite: Influence of crystallization time, temperature and batch molar ratio $SiO_2$/$Al_2O_3$ on the particulate properties of zeolite crystals, Powder Technol., 235, 322-328 (2013). https://doi.org/10.1016/j.powtec.2012.10.046
  13. C. F. Wang, J. S. Li, L. J. Wang, and X. Y. Sun, Influence of NaOH concentrations on synthesis of pure-form zeolite A from fly ash using two-stage method, J. Hazard. Mater., 155, 58-64 (2008). https://doi.org/10.1016/j.jhazmat.2007.11.028
  14. M. A. Camblor, A. Corma, and S. Valencia, Characterization of nanocrystalline zeolite Beta, Microporous Mesoporous Mater., 25, 59-74 (1998). https://doi.org/10.1016/S1387-1811(98)00172-3
  15. U. D. Joshi, P. N Joshi, S. S Tamhankar, V. V. Joshi, C. V Rode, and V. P Shiralkar, Effect of nonframework cations and crystallinity on the basicity of NaX zeolites, Appl. Catal. A, 239, 209-220 (2003). https://doi.org/10.1016/S0926-860X(02)00391-5
  16. F. Benaliouche, Y. Boucheffa, P. Ayrault, S. Mignard, and P. Magnoux, $NH_3$-TPD and FTIR spectroscopy of pyridine adsorption studies for characterization of Ag- and Cu-exchanged X zeolites, Microporous Mesoporous Mater., 111, 80-88 (2008). https://doi.org/10.1016/j.micromeso.2007.07.006