DOI QR코드

DOI QR Code

Effect of Promotor Addition to Pt/TiO2 Catalyst on Reverse Water Gas Shift Reaction

RWGS 반응을 위한 Pt/TiO2 촉매의 조촉매 첨가 영향 연구

  • Kim, Sung Su (Department of Environmental Energy Engineering, Kyonggi University)
  • 김성수 (경기대학교 환경에너지공학과)
  • Received : 2017.03.24
  • Accepted : 2017.04.16
  • Published : 2017.06.10

Abstract

Reaction characteristics and catalytic activities on reverse water gas shift (RWGS) reaction over $Pt/TiO_2$ catalyst and Pt based catalysts added promoters were investigated. It was confirmed that RWGS reaction activity was affected by the kind of supports and active metals and the $Pt/TiO_2$ catalyst showed the highest catalytic activity. From various inlet $CO_2$ concentration tests and also the evaluation of thermodynamic equilibrium conversion, the catalytic activity of $Pt/TiO_2$ catalyst could be evaluated objectively and it was found to be higher than that of commercial catalysts. The catalytic activity could increase by adding Ca and Na as promoters. The XPS analysis revealed that the catalytic activity is closely correlated with the electron density of surface active sites.

다양한 조촉매가 첨가된 $Pt/TiO_2$ 촉매 및 순수 Pt계 촉매의 RWGS 반응에 대한 특성과 성능에 관한 연구를 수행하였다. 지지체 및 활성금속 종류에 의해 RWGS 반응 성능이 크게 영향 받음을 확인하였고, $Pt/TiO_2$ 촉매가 가장 우수한 성능을 보임을 알 수 있었다. $CO_2$ 주입 농도별 실험 및 열역학적 평형 전환율 평가를 통해 $Pt/TiO_2$ 촉매의 성능을 객관적으로 평가할 수 있었고, 상용촉매 대비 우수한 성능을 보임을 관찰하였다. 조촉매로 첨가한 Ca와 Na는 촉매성능을 증진시킬 수 있었으며, XPS 분석을 통해 표면 활성점의 전자밀도가 성능과 밀접한 관련이 있음을 확인하였다.

Keywords

References

  1. S. S. Kim, H. H. Lee, and S. C. Hong, A study on the effect of support's reducibility on the reverse water-gas shift reaction over Pt catalysts, Appl. Catal. A, 423-424, 100-107 (2012). https://doi.org/10.1016/j.apcata.2012.02.021
  2. S. S. Kim, H. H. Lee, and S. C. Hong, The effect of the morphological characteristics of $TiO_2$ supports on the reverse water-gas shift reaction over Pt/$TiO_2$ catalysts, Appl. Catal. B, 119-120, 100-108 (2012). https://doi.org/10.1016/j.apcatb.2012.02.023
  3. S. S. Kim, K. H. Park, and S. C. Hong, A study of the selectivity of the reverse water-gas-shift reaction over Pt/$TiO_2$ catalysts, Fuel Process. Technol., 108 47-54 (2013). https://doi.org/10.1016/j.fuproc.2012.04.003
  4. Y. Sun, M. Yao, J. Zhang, and G. Yang, Indirect $CO_2$ mineral sequestration by steelmaking slag with $NH_4Cl$ as leaching solution, Chem. Eng. J., 173, 437-445 (2011). https://doi.org/10.1016/j.cej.2011.08.002
  5. S. Lee and S. Park, A review on solid adsorbents for carbon dioxide capture, J. Ind. Eng. Chem., 23, 1-11 (2015). https://doi.org/10.1016/j.jiec.2014.09.001
  6. Y. Lee, S. M. Lee, W. G. Hong, Y. S. Huh, S. Y. Park, S. C. Lee, J. Lee, J. B. Lee, H. U. Lee, and H. J. Kim, Carbon dioxide capture on primary amine groups entrapped in activated carbon at low temperatures, J. Ind. Eng. Chem., 23, 16-20 (2015). https://doi.org/10.1016/j.jiec.2014.08.020
  7. D. Han, H. Namkung, H. Lee, D. Huh, and H. Kim, $CO_2$ sequestration by aqueous mineral carbonation of limestone in a supercritical reactor, J. Ind. Eng. Chem., 21, 792-796 (2015). https://doi.org/10.1016/j.jiec.2014.04.014
  8. C. Kunzler, N. Alves, E. Pereira, J. Nienczewski, R. Ligabue, S. Einloft, and J. Dullius, $CO_2$ storage with indirect carbonation using industrial waste, Energy Procedia, 4, 1010-1017 (2011). https://doi.org/10.1016/j.egypro.2011.01.149
  9. D. Pakhare and J. Spivey, A review of dry ($CO_2$) reforming of methane over noble metal catalysts, Chem. Soc. Rev., 43, 7813-7837 (2014). https://doi.org/10.1039/C3CS60395D
  10. K. Mette, S. Kuhl, H. Dudder, and K. Kahler, Stable performance of Ni-catalysts in dry reforming of methane at high temperatures for an efficient $CO_2$-conversion into Syngas, ChemCatChem, 6, 100-104 (2014). https://doi.org/10.1002/cctc.201300699
  11. K. Y. Koo, H. S. Roh, Y. T. Seo, D. J. Seo, W. L. Yoon, and S. B. Park, Coke study on MgO-promoted Ni/$Al_2O_3$ catalyst in combined $H_2O$ and $CO_2$ reforming of methane for gas to liquid (GTL) process, Appl. Catal. A, 340, 183-190 (2008). https://doi.org/10.1016/j.apcata.2008.02.009
  12. W. Jang, D. Jeong, J. Shim, H. Kim, H. Roh, I. Son, and S. J. Lee, Combined steam and carbon dioxide reforming of methane and side reactions: Thermodynamic equilibrium analysis and experimental application, Appl. Energy, 173, 80-91 (2016). https://doi.org/10.1016/j.apenergy.2016.04.006
  13. K. Y. Koo, S. Lee, U. H. Jung, H. H. Roh, and W. L. Yoon, Syngas production via combined steam and carbon dioxide reforming of methane over Ni-Ce/$MgAl_2O_4$ catalysts with enhanced coke resistance, Fuel Process. Technol., 119, 151-157 (2014). https://doi.org/10.1016/j.fuproc.2013.11.005
  14. C. S. Chen, W. H. Cheng, and S. S. Lin, Study of iron-promoted Cu/$SiO_2$ catalyst on high temperature reverse water gas shift reaction, Appl. Catal. A, 257, 97-106 (2004). https://doi.org/10.1016/S0926-860X(03)00637-9
  15. L. Wang, S. Zhang, and Y. Liu, Reverse water gas shift reaction over co-precipitated Ni-$CeO_2$ catalysts, J. Rare Earths, 26, 66-70 (2008). https://doi.org/10.1016/S1002-0721(08)60039-3
  16. S. W. Park, O. S. Joo, K. D. Jung, H. Kim, and S. H. Han, Development of ZnO/$Al_2O_3$ catalyst for reverse-water-gas-shift reaction of CAMERE process, Appl. Catal. A, 211, 81-90 (2001). https://doi.org/10.1016/S0926-860X(00)00840-1
  17. A. Goguet, F. C. Meunier, D. Tibiletti, J. P. Breen, and R. Burch, Spectrokinetic investigation of reverse water-gas-shift reaction intermediates over a Pt/$CeO_2$ catalyst, J. Phys. Chem. B, 108, 20240-20246 (2004). https://doi.org/10.1021/jp047242w
  18. X. Chen, X. Su, B. Liang, X. Yang, X. Ren, H. Duan, Y. Huang, and T. Zhang, Identification of relevant active sites and a mechanism study for reverse water gas shift reaction over Pt/$CeO_2$ catalysts, J. Energy Chem., 25, 1051-1057 (2016). https://doi.org/10.1016/j.jechem.2016.11.011
  19. P. Panagiotopoulou and D. I. Kondarides, Effects of promotion of $TiO_2$ with alkaline earth metals on the chemisorptive properties and water-gas shift activity of supported platinum catalysts, Appl. Catal. B, 101, 738-746 (2011). https://doi.org/10.1016/j.apcatb.2010.11.016
  20. P. Panagiotopoulou, and D. I. Kondarides, Effects of alkali promotion of $TiO_2$ on the chemisorptive properties and water-gas shift activity of supported noble metal catalysts, J. Catal. 267, 57-66 (2009). https://doi.org/10.1016/j.jcat.2009.07.014
  21. P. Panagiotopoulou and D. I. Kondarides, Effects of alkali additives on the physicochemical characteristics and chemisorptive properties of Pt/$TiO_2$ catalysts, J. Catal., 260, 141-149 (2008). https://doi.org/10.1016/j.jcat.2008.09.014
  22. A. Karelovic and P. Ruiz, Mechanistic study of low temperature $CO_2$ methanation over Rh/$TiO_2$ catalysts, J. Catal., 301, 141-153 (2013). https://doi.org/10.1016/j.jcat.2013.02.009
  23. A. H. Zamani, R. Ali, and W. A. W. A. Bakar, Optimization of $CO_2$ methanation reaction over M*/Mn/Cu-$Al_2O_3$ (M*: Pd, Rh and Ru) catalysts, J. Ind. Eng. Chem., 29, 238-248 (2015). https://doi.org/10.1016/j.jiec.2015.02.028
  24. A. A. Phatak, N. Koryabkina, S. Rai, J. L. Ratts, W. Ruettinger, R. J. Farrauto, G. E. Blau, W. N. Delgass, and F. H. Ribeiro, Kinetics of the water-gas shift reaction on Pt catalysts supported on alumina and ceria, Catal. Today, 123, 224-234 (2007). https://doi.org/10.1016/j.cattod.2007.02.031
  25. E. Baumgarten, A. Fiebes, A. Stumpe, F. Ronkel, and J. W. Shultze, Synthesis and characterization of a new platinum supported catalyst based on poly-{acrylamide-co-[3-(acryloylamino) Propyltrimethylammoniumchloride]} as carrier, J. Mol. Catal. A, 113, 469-477 (1996). https://doi.org/10.1016/S1381-1169(96)00275-0