Browse > Article
http://dx.doi.org/10.14478/ace.2017.1026

Effect of Promotor Addition to Pt/TiO2 Catalyst on Reverse Water Gas Shift Reaction  

Kim, Sung Su (Department of Environmental Energy Engineering, Kyonggi University)
Publication Information
Applied Chemistry for Engineering / v.28, no.3, 2017 , pp. 339-344 More about this Journal
Abstract
Reaction characteristics and catalytic activities on reverse water gas shift (RWGS) reaction over $Pt/TiO_2$ catalyst and Pt based catalysts added promoters were investigated. It was confirmed that RWGS reaction activity was affected by the kind of supports and active metals and the $Pt/TiO_2$ catalyst showed the highest catalytic activity. From various inlet $CO_2$ concentration tests and also the evaluation of thermodynamic equilibrium conversion, the catalytic activity of $Pt/TiO_2$ catalyst could be evaluated objectively and it was found to be higher than that of commercial catalysts. The catalytic activity could increase by adding Ca and Na as promoters. The XPS analysis revealed that the catalytic activity is closely correlated with the electron density of surface active sites.
Keywords
Pt; $TiO_2$; promotor; catalysis; $CO_2$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. S. Kim, H. H. Lee, and S. C. Hong, A study on the effect of support's reducibility on the reverse water-gas shift reaction over Pt catalysts, Appl. Catal. A, 423-424, 100-107 (2012).   DOI
2 S. S. Kim, H. H. Lee, and S. C. Hong, The effect of the morphological characteristics of $TiO_2$ supports on the reverse water-gas shift reaction over Pt/$TiO_2$ catalysts, Appl. Catal. B, 119-120, 100-108 (2012).   DOI
3 S. S. Kim, K. H. Park, and S. C. Hong, A study of the selectivity of the reverse water-gas-shift reaction over Pt/$TiO_2$ catalysts, Fuel Process. Technol., 108 47-54 (2013).   DOI
4 Y. Sun, M. Yao, J. Zhang, and G. Yang, Indirect $CO_2$ mineral sequestration by steelmaking slag with $NH_4Cl$ as leaching solution, Chem. Eng. J., 173, 437-445 (2011).   DOI
5 S. Lee and S. Park, A review on solid adsorbents for carbon dioxide capture, J. Ind. Eng. Chem., 23, 1-11 (2015).   DOI
6 Y. Lee, S. M. Lee, W. G. Hong, Y. S. Huh, S. Y. Park, S. C. Lee, J. Lee, J. B. Lee, H. U. Lee, and H. J. Kim, Carbon dioxide capture on primary amine groups entrapped in activated carbon at low temperatures, J. Ind. Eng. Chem., 23, 16-20 (2015).   DOI
7 D. Han, H. Namkung, H. Lee, D. Huh, and H. Kim, $CO_2$ sequestration by aqueous mineral carbonation of limestone in a supercritical reactor, J. Ind. Eng. Chem., 21, 792-796 (2015).   DOI
8 C. Kunzler, N. Alves, E. Pereira, J. Nienczewski, R. Ligabue, S. Einloft, and J. Dullius, $CO_2$ storage with indirect carbonation using industrial waste, Energy Procedia, 4, 1010-1017 (2011).   DOI
9 D. Pakhare and J. Spivey, A review of dry ($CO_2$) reforming of methane over noble metal catalysts, Chem. Soc. Rev., 43, 7813-7837 (2014).   DOI
10 K. Mette, S. Kuhl, H. Dudder, and K. Kahler, Stable performance of Ni-catalysts in dry reforming of methane at high temperatures for an efficient $CO_2$-conversion into Syngas, ChemCatChem, 6, 100-104 (2014).   DOI
11 K. Y. Koo, H. S. Roh, Y. T. Seo, D. J. Seo, W. L. Yoon, and S. B. Park, Coke study on MgO-promoted Ni/$Al_2O_3$ catalyst in combined $H_2O$ and $CO_2$ reforming of methane for gas to liquid (GTL) process, Appl. Catal. A, 340, 183-190 (2008).   DOI
12 W. Jang, D. Jeong, J. Shim, H. Kim, H. Roh, I. Son, and S. J. Lee, Combined steam and carbon dioxide reforming of methane and side reactions: Thermodynamic equilibrium analysis and experimental application, Appl. Energy, 173, 80-91 (2016).   DOI
13 K. Y. Koo, S. Lee, U. H. Jung, H. H. Roh, and W. L. Yoon, Syngas production via combined steam and carbon dioxide reforming of methane over Ni-Ce/$MgAl_2O_4$ catalysts with enhanced coke resistance, Fuel Process. Technol., 119, 151-157 (2014).   DOI
14 A. Goguet, F. C. Meunier, D. Tibiletti, J. P. Breen, and R. Burch, Spectrokinetic investigation of reverse water-gas-shift reaction intermediates over a Pt/$CeO_2$ catalyst, J. Phys. Chem. B, 108, 20240-20246 (2004).   DOI
15 C. S. Chen, W. H. Cheng, and S. S. Lin, Study of iron-promoted Cu/$SiO_2$ catalyst on high temperature reverse water gas shift reaction, Appl. Catal. A, 257, 97-106 (2004).   DOI
16 L. Wang, S. Zhang, and Y. Liu, Reverse water gas shift reaction over co-precipitated Ni-$CeO_2$ catalysts, J. Rare Earths, 26, 66-70 (2008).   DOI
17 S. W. Park, O. S. Joo, K. D. Jung, H. Kim, and S. H. Han, Development of ZnO/$Al_2O_3$ catalyst for reverse-water-gas-shift reaction of CAMERE process, Appl. Catal. A, 211, 81-90 (2001).   DOI
18 X. Chen, X. Su, B. Liang, X. Yang, X. Ren, H. Duan, Y. Huang, and T. Zhang, Identification of relevant active sites and a mechanism study for reverse water gas shift reaction over Pt/$CeO_2$ catalysts, J. Energy Chem., 25, 1051-1057 (2016).   DOI
19 P. Panagiotopoulou and D. I. Kondarides, Effects of promotion of $TiO_2$ with alkaline earth metals on the chemisorptive properties and water-gas shift activity of supported platinum catalysts, Appl. Catal. B, 101, 738-746 (2011).   DOI
20 P. Panagiotopoulou, and D. I. Kondarides, Effects of alkali promotion of $TiO_2$ on the chemisorptive properties and water-gas shift activity of supported noble metal catalysts, J. Catal. 267, 57-66 (2009).   DOI
21 P. Panagiotopoulou and D. I. Kondarides, Effects of alkali additives on the physicochemical characteristics and chemisorptive properties of Pt/$TiO_2$ catalysts, J. Catal., 260, 141-149 (2008).   DOI
22 E. Baumgarten, A. Fiebes, A. Stumpe, F. Ronkel, and J. W. Shultze, Synthesis and characterization of a new platinum supported catalyst based on poly-{acrylamide-co-[3-(acryloylamino) Propyltrimethylammoniumchloride]} as carrier, J. Mol. Catal. A, 113, 469-477 (1996).   DOI
23 A. Karelovic and P. Ruiz, Mechanistic study of low temperature $CO_2$ methanation over Rh/$TiO_2$ catalysts, J. Catal., 301, 141-153 (2013).   DOI
24 A. H. Zamani, R. Ali, and W. A. W. A. Bakar, Optimization of $CO_2$ methanation reaction over M*/Mn/Cu-$Al_2O_3$ (M*: Pd, Rh and Ru) catalysts, J. Ind. Eng. Chem., 29, 238-248 (2015).   DOI
25 A. A. Phatak, N. Koryabkina, S. Rai, J. L. Ratts, W. Ruettinger, R. J. Farrauto, G. E. Blau, W. N. Delgass, and F. H. Ribeiro, Kinetics of the water-gas shift reaction on Pt catalysts supported on alumina and ceria, Catal. Today, 123, 224-234 (2007).   DOI