DOI QR코드

DOI QR Code

Practical Study of Low-temperature Vacuum Swing Adsorption Process for VOCs Removal

휘발성 유기화합물 제거를 위한 저온 vacuum swing adsorption 공정의 실용화 연구

  • Jeon, Mi-Jin (Korea Testing Laboratory Environmental Convergence Technology Center) ;
  • Pak, Seo-Hyun (Korea Testing Laboratory Environmental Convergence Technology Center) ;
  • Lee, Hyung-Don (Korea Testing Laboratory Environmental Convergence Technology Center) ;
  • Jeon, Yong-Woo (Korea Testing Laboratory Environmental Convergence Technology Center)
  • 전미진 (한국산업기술시험원 환경융합기술센터) ;
  • 박서현 (한국산업기술시험원 환경융합기술센터) ;
  • 이형돈 (한국산업기술시험원 환경융합기술센터) ;
  • 전용우 (한국산업기술시험원 환경융합기술센터)
  • Received : 2017.03.23
  • Accepted : 2017.04.04
  • Published : 2017.06.10

Abstract

The objective of this work was to study the low temperature vacuum adsorption technology applicable to small and medium scale painting plants, which is the main emission source of volatile organic compounds. The low-temperature vacuum swing adsorption (VSA) technology is the way that the adsorbates are removed by reducing pressure at low temperature ($60{\sim}90^{\circ}C$) to compensate disadvantages of the existing thermal swing adsorption (TSA) technology. Commercial activated carbon was used and the absorption and desorption characteristics of toluene, a representative VOCs, were tested on a lab scale. Also based on the lab scale experimental results, a $30m^3min^{-1}$ VSA system was designed and applied to the actual painting factory to assess the applicability of the VSA system in the field. As a result of lab scale experiments, a 2 mm pellet type activated carbon showed higher toluene adsorption capacity than that of using 4 mm pellet type, and was used in a practical scale VSA system. Optimum conditions for desorption experiments were $80{\sim}90^{\circ}C$ and 100 torr. In the practical scale system, the adsorption/desorption cycles were repeated 95 times. As a result, VOCs discharged from the painting factory can be effectively removed upto 98% or more even after repeated adsorption/desorption cycles when using VSA technology indicating potential field applicabilities.

본 연구에서는 주요한 휘발성 유기화합물의 발생원인 도장공장 중에서 중소규모의 공장에 적용 가능한 저온 vacuum swing adsorption (VSA) 기술에 대하여 연구하였다. 저온 VSA 기술이란 기존의 thermal swing adsorption (TSA)의 단점을 보완하기 위하여 저온($60{\sim}90^{\circ}C$)에서 감압하여 흡착질을 탈착하는 방식이다. 국내에서 시판되고 있는 상용 활성탄을 이용하여 대표적인 VOCs인 톨루엔의 흡 탈착 특성을 랩(Lab)규모로 실험하였으며, 이를 바탕으로 $30m^3min^{-1}$ 규모의 VSA 시스템을 설계하여 실제 도장 공장에 적용하여 VSA 시스템의 현장적용 가능성에 대하여 평가하였다. 랩 규모 실험 결과, 2 mm 펠렛형 활성탄은 4 mm 펠렛형 활성탄보다 높은 톨루엔 흡착능을 나타내었으며, 이에 파일럿 규모의 VSA의 충진 활성탄으로 사용되었다. 탈착 실험에서는 $80{\sim}90^{\circ}C$의 온도와 100 torr의 압력이 최적 조건으로 결정되었다. 랩 규모 실험 결과를 바탕으로 파일럿 규모 VSA 시스템을 설계하였으며 실제 도장 공장에 현장 적용하여 95회 흡 탈착 실험을 반복 수행하였다. 수행 결과, 연속 흡 탈착 반복실험 후, 도정공장에서 배출된 VOCs를 98% 이상 효과적으로 제거 가능함을 확인하였으며 VSA 시스템의 안정적인 현장 적용이 가능함을 검증하였다.

Keywords

References

  1. S. C. Jung and S. H. Lee, Practical usage of low-temperature metal catalyst for the destruction of volatile organic compounds (VOCs), J. Korean Soc. Environ. Eng., 34, 397-405 (2012). https://doi.org/10.4491/KSEE.2012.34.6.397
  2. A. Anfruns, M. J. Martin, and M. A. Montes-Moran, Removal of odourous VOCs using sludge-based adsorbents, Chem. Eng. J., 166, 1022-1031 (2011). https://doi.org/10.1016/j.cej.2010.11.095
  3. S. W. Baek, J. R. Kim, and S. K. Ihm, Design of dual functional adsorbent/catalyst system for the control of VOC's by using metal-loaded hydrophobic Y-zeolites, Catal. Today, 93-95, 575-581 (2004). https://doi.org/10.1016/j.cattod.2004.06.107
  4. K. J. Kim and H. G. Ahn, The effect of pore structure of zeolite on the adsorption of VOCs and their desorption properties by microwave heating, Microporous Mesoporous Mater., 152, 78-83 (2012). https://doi.org/10.1016/j.micromeso.2011.11.051
  5. H. Zaitan, A. Korrir, T. Chafik, and D. Bianchi, Evaluation of the potential of volatile organic compound (di-methylbenzene) removal using adsorption on natural minerals compared to commercial oxides, J. Hazard. Mater., 262, 365-376 (2013). https://doi.org/10.1016/j.jhazmat.2013.08.071
  6. S. Chandra Shekar, K. Soni, R. Bunkar, M. Sharma, B. Singh, M. V. S. Suryanarayana, and R. Vijayaraghavan, Vapor phase catalytic degradation of bis(2-chloroethyl) ether on supported vanadia-titania catalyst, Appl. Catal. B, 103, 11-20 (2011). https://doi.org/10.1016/j.apcatb.2010.12.048
  7. M. Hussain, N. Russo, and G. Saracco, Photocatalytic abatement of VOCs by novel optimized $TiO_2$ nanoparticles, Chem. Eng. J., 166, 138-149 (2011). https://doi.org/10.1016/j.cej.2010.10.040
  8. S. Mudliar, B. Giri, K. Padoley, D. Satpute, R. Dixit, P. Bhatt, R. Pandey, A. Juwarkar, and A. Vaidya, Bioreactors for treatment of VOCs and odours-a review, J. Environ. Manag., 91, 1039-1054 (2010). https://doi.org/10.1016/j.jenvman.2010.01.006
  9. H. An, B. Fen, and S. Su, $CO_2$ capture by electrothermal swing adsorption with activated carbon fibre materials, Int. J. Greenh. Gas Control, 5, 16-25 (2011). https://doi.org/10.1016/j.ijggc.2010.03.007
  10. S. H. Lee, J. W. Lim, Y. J. Rhim, S. D. Kim, K. J. Woo, M. S. Son, H. J. Park, M. C. Seo, and S. K. Ryu, Design standard of activated carbon vessel for the intermittent emission sources of volatile organic compounds, J. Korean Soc. Atmos. Environ., 23, 250-260 (2007). https://doi.org/10.5572/KOSAE.2007.23.2.250
  11. K. J. Kim, J. M. Park, O. S. Kwon, and D. J. Song, A development of VOC control technology for small surface coating, National Institute of Environmental, Inchon, Korea (2008).
  12. M. Molina-Sabio, M. T. Gonzalez, F. Rodriguez-Reinoso, and A. Sepulveda-Escribano, Effect of steam and carbon dioxide activation in the micropore size distribution of activated carbon, Carbon, 34, 505-509 (1996). https://doi.org/10.1016/0008-6223(96)00006-1
  13. D. Alireza, K. Ali, R. Abbas, and A. Hassan, Regeneration of granular activated carbon saturated with gaseous toluene by microwave irradiation, Turk. J. Eng. Environ. Sci., 3, 49-58 (2010).
  14. R. Dawson, A. I. Cooper, and D. J. Adams, Chemical functionalization strategies for carbon dioxide capture in microporous organic polymers, Polym. Int., 62, 345-352 (2013).
  15. H. Sui, P. An, X. Li, S. Cong, and L. He, Removal and recovery of o-xylene by silica gel using vacuum swing adsorption, Chem. Eng. J., 316, 232-242 (2017). https://doi.org/10.1016/j.cej.2017.01.061