DOI QR코드

DOI QR Code

Effect of Flow Channel Shape on Performance in Reverse Electrodialysis

유로 형상이 역전기투석 장치의 성능에 미치는 영향

  • Received : 2017.01.05
  • Accepted : 2017.03.08
  • Published : 2017.05.01

Abstract

Reverse electrodialysis (RED), which generates electrical energy from the difference in concentration of two solutions, has been actively studied owing to its high potential and the increased interest in renewable energy resulting from the Paris Agreement on climate change. For RED commercialization, its power density needs to be maximized, and therefore various methods have been discussed. In this paper, the power density was measured using various flow shapes based on the aspect ratio, opening ratio, and number of distribution channels. We found that the power density is enhanced with a decrease in the aspect ratio and an increase in the opening ratio and number of distribution channels.

두 용액의 농도 차이를 이용하여 전기에너지를 생성하는 역전기투석 장치는 파리기후협약으로 인한 신재생에너지기술의 관심 증가와 높은 잠재적에너지량으로 인하여 활발한 연구가 진행되고 있는 분야이다. 상용화 관점에서 볼 때 역전기투석 장치의 출력 밀도를 최대화하는 것은 중요하며, 따라서 출력 밀도의 개선을 위한 다양한 방안이 논의되고 있다. 본 논문에서는 역전기투석 장치의 출력 개선 방법 중 유로 형상 변화에 초점을 맞췄다. 유로 형상 변수로서 종횡비, 개방비, 분배 및 배출 유로의 개수를 사용하였다. 결론적으로 유로의 종횡비는 감소하고 개방비와 분배 및 배출 유로의 개수가 증가할 때, 역전기투석 장치의 출력 밀도가 개선되는 것을 발견하였다.

Keywords

References

  1. Berrouche, Y. and Pillay, P., 2012, "Determination of Salinity Gradient Power Potential in Quebec, Canada," J. Renewable Sustainable Energy, Vol. 4, No. 5, pp.
  2. Tedesco, M., Scalici, C., Vaccari, D., Cipollina, A., Tamburini, A. and Micale, G., 2016, "Performance of the First Reverse Electrodialysis Pilot Plant for Power Production from Saline Waters and Concentrated Brines," J. Memb. Sci., Vol. 500, pp. 33-45. https://doi.org/10.1016/j.memsci.2015.10.057
  3. Tedesco, Cipollina, A., Tamburini, A. and Micale, G., 2017, "Towards 1kW Power Production in a Reverse Electrodialysis Pilot Plant with Saline Waters and Concentrated Brines," J. Memb. Sci., Vol. 522, pp. 226-236. https://doi.org/10.1016/j.memsci.2016.09.015
  4. Kwon, K., Park, B. H., Kim, D. and Kim, D., 2015, "Evaluation of Reverse Electrodialysis System with Various Compositions of Natural Resources," Tran. Korean Soc. Mech. Eng. B, Vol. 39, No. 6, pp. 513-518. https://doi.org/10.3795/KSME-B.2015.39.6.513
  5. Zhu, X., He, W. and Logan, B. E., 2015, "Reducing Pumping Energy by using Different Flow Rates of High and Low Concentration Solutions in Reverse Electrodialysis Cells," J. Memb. Sci., Vol. 486, pp. 215-221. https://doi.org/10.1016/j.memsci.2015.03.035
  6. Vermaas, D. A., Saakes, M. and Nijmeijer, K., 2011, "Power Generation using Profiled Membranes in Reverse Electrodialysis," J. Memb. Sci., Vol. 385-386, pp. 234-242. https://doi.org/10.1016/j.memsci.2011.09.043
  7. Vermaas, D. A, Saakes, M. and Nijmeijer, K., 2011, "Doubled Power Density from Salinity Gradients at Reduced Intermembrane Distance," Environ. Sci. Technol., Vol. 45, No. 16, pp. 7089-7095. https://doi.org/10.1021/es2012758
  8. Kwon, K., Han, J., Park, B. H., Shin, Y. and Kim D., 2015, "Brine Recovery using Reverse Electrodialysis in Membrane-based Desalination Processes," Desalination, Vol. 362, pp. 1-10. https://doi.org/10.1016/j.desal.2015.01.047
  9. Guler, E., Elizen, R., Vermaas, D. A., Saakes, M. and Nijmeijer, K., 2013, "Performance-determining Membrane Properties in Reverse Electrodialysis," J. Memb. Sci., Vol. 446, pp. 266-276. https://doi.org/10.1016/j.memsci.2013.06.045
  10. Kim, D. H., Park, B. H., Kwon, K., Li, L. and Kim, D., 2017, "Modeling of Power Generation with Thermolytic Reverse Electrodialysis for Low-grade Waste Heat Recovery," Appl. Energy, Vol. 189, pp. 201-210. https://doi.org/10.1016/j.apenergy.2016.10.060
  11. Veerman, J., de Jong, R. M., Saakes, M., Metz, S. J. and Harmsen, G. J., 2009, "Reverse Electrodialysis: Comparison of Six Commercial Membrane Pairs on the Thermodynamic Efficiency and Power Density," J. Memb. Sci., Vol. 343, No. 1-2, pp. 7-15. https://doi.org/10.1016/j.memsci.2009.05.047
  12. Kim, H. K., Lee, M. S., Lee, S. Y., Choi, Y. W., Jeong, N. J. and Kim, C. S., 2015, "High Power Density of Reverse Electrodialysis with Pore-filling ion Exchange Membranes and a High-open-area Spacer," J. Mater: Chem. A., Vol. 3, pp. 16302-16306. https://doi.org/10.1039/C5TA03571F
  13. Tedesco, M., Tamburini, C. A., Micale, G., Helsen, J. and Papapetrou, M., 2015, "REAPower: use of Desalination Brine for Power Production Through Reverse Electrodialysis," Desalination Water Treat., Vol. 53, No. 12, pp. 3161-3169. https://doi.org/10.1080/19443994.2014.934102
  14. Tedesco, M., Cipollina, A., Tamburini, A., van Baak, W. and Micale, G., 2012, "Modelling the Reverse Electrodialysis Process with Seawater and Concentrated Brines," Desalination Water Treat., Vol. 49, No. 1-3, pp. 404-424. https://doi.org/10.1080/19443994.2012.699355
  15. Dlugolecki, P., Dabrowska, J., Nijmeijer, K. and Wessling, M., 2010, "Ion Conductive Spacers for Increased Power Generation in Reverse Electrodialysis," J. Memb. Sci., Vol. 347, No. 1-2, pp. 101-107. https://doi.org/10.1016/j.memsci.2009.10.011
  16. Vermaas, D. A., Saakes, M. and Nijmeijer, K., 2014, "Enhanced Mixing in the Diffusive Boundary Layer for Energy Generation in Reverse Electrodialyis," J. Memb. Sci., Vol. 453, pp. 312-319. https://doi.org/10.1016/j.memsci.2013.11.005