DOI QR코드

DOI QR Code

치자(Gardenia jasminoides Ellis) 씨 추출물의 질소산화물 소거능 및 지질과산화 저해능에 관한 연구

Effect of Extracts produced from Gardenia jasminoides Seed Using Different Types of Solvents on Nitrogen Oxide Scavenging Activities and Lipid Peroxidation Inhibition

  • Jin, Dong-Hyeok (Department of Food Science and Technology, Pusan National University) ;
  • Oh, Da-Young (Department of Food Science and Technology, Pusan National University) ;
  • Lee, Young-Geun (Department of Food Science and Technology, Pusan National University) ;
  • Kim, Han-Soo (Department of Food Science and Technology, Pusan National University)
  • 투고 : 2017.02.07
  • 심사 : 2017.03.27
  • 발행 : 2017.03.30

초록

치자 씨 추출물이 항산화력 및 지질과산화 저해능에 미치는 영향을 알아 보고 치자의 기능성 식품 소재로서의 가치를 검토하기 위하여 실험을 수행한 결과, 치자 씨의 anthocyanin 함량을 측정한 결과 $2.201{\pm}0.516mg/100g\;DW$로 나타났으며, 치자 씨의 용매 별 추출 수율은 chloroform:methanol(CM, 2:1, v/v) 36.39%, 70% ethanol (27.32%), n-butanol (26.23%) 로 확인되었다. 추출 용매 별 항산화 활성은 농도(0.2, 0.4, 0.6 mg/mL)가 증가할수록 유의적으로 증가하였으며 positive control로 사용된 ascorbic acid, BHA, trolox 보다는 낮은 활성이 관찰되었다. 치자 씨의 total phenol 함량(mg CAE/g)은 CM (32.50), 70% ethanol (30.09), n-butanol (11.07) 추출물 순으로 n-butanol 추출물에서 가장 적은 함량을 보였으며, Nitric oxide (NO) radical 소거능에서는 CM (76.97~84.24%), 70% ethanol (74.10~79.99%), n-butanol (30.66~37.15%) 추출물 순으로 관찰되었다. Nitrite ($NO_2$) 소거능은 CM (33.53~43.23%), 70% ethanol (32.40~35.98%), n-butanol (24.72~28.14%) 순으로 관찰되었다. ${\beta}-carotene$ 탈색 저해능은 CM (23.73~44.70%), 70% ethanol (22.03~41.32%), n-butanol (16.00~27.87%) 순으로 확인되었다. Reducing power (optical density)는 70% ethanol (0.073~0.182), CM (0.057~0.154), n-butanol (0.028~0.079) 순으로 관찰되었다. 지질과산화 저해능은 씨 추출물 중 CM (53.26~76.56%), 70% ethanol (52.97~76.56%), n-butanol (38.54~53.33%) 순으로 나타났다. 이에, 치자씨 추출물은 천연 항산화제로서 기능성 식품의 가치가 높을 것으로 판단된다.

The object of this study was to measure the bioactivity and antioxidant activity of seed from Gardenia jasminoides Ellis fructus (GJE). GJE seeds were performed the extraction of them by chloroform:methanol (CM, 2:1, v/v), 70% ethanol and n-butanol. Sequentially, total phenol content, nitrogen oxide scavenging activity, antioxidant activity and lipid peroxidation inhibition activity of the extracts were investigated. Solvent extract bioactivity of increasing concentrations (0.2, 0.4, 0.6 mg/mL) were significantly increased (p<0.05). GJE seed extracts showed lower activity than positive control (ascorbic acid, BHA, trolox). The highest concentration of CM extracts was obtained in the same manner as the results of analysis of the total phenol contents of the GJE seed, and 70% ethanol extract showed the highest activity of reducing power. The water soluble carotenoids crocin and flavonoid were effective. As a result of this experiment. the seeds of GJE showed excellent antioxidant, and lipid peroxidation inhibitory properties.

키워드

참고문헌

  1. K. Menrad, Market and marketing of functional food in Europe, J. Food Eng., 56, 181 (2003). https://doi.org/10.1016/S0260-8774(02)00247-9
  2. B. Halliwell, J. M. Gutteridge and C. E. Cross, Free radicals, antioxidants, and human disease: where are we now?, J. Lab. Clinic. Med., 119, 598 (1992).
  3. Hogg, N., Darley-Usmar, V. M., Wilson, M. T., and Moncada, S, Production of hydroxyl radicals from the simultaneous generation of superoxide and nitric oxide. Biochemical Journal, 281, 419 (1992). https://doi.org/10.1042/bj2810419
  4. J. S. Hwang, B. H. Lee, X. An, H. R. Jeong, Y. E. Kim, I. Lee, H. Lee and D. O. Kim, Total phenolics, total flavonoids, and antioxidant capacity in the leaves, bulbs, and roots of Allium hookeri, Korean J. Food Sci. Technol., 47, 261 (2015). https://doi.org/10.9721/KJFST.2015.47.2.261
  5. H. O. Edeoga, D. E. Okwu and B. O. Mbaebie, Phytochemical constituents of some Nigerian medicinal plants, African J. Biotechnol., 4, 685 (2005). https://doi.org/10.5897/AJB2005.000-3127
  6. I. A. Lee, J. H. Lee, N. I. Baek and D. H. Kim, Antihyperlipidemic effect of crocin isolated from the fructus of Gardenia jasminoides and its metabolite crocetin, Biol. Pharm. Bull., 28, 2106 (2005). https://doi.org/10.1248/bpb.28.2106
  7. T. Ochiai, S. Ohno, S. Soeda, H. Tanaka, Y. Shoyama and H. Shimeno, Crocin prevents the death of rat pheochromyctoma (PC-12) cells by its antioxidant effects stronger than those of ${\alpha}$-tocopherol, Neurosci. Lett., 362, 61 (2004). https://doi.org/10.1016/j.neulet.2004.02.067
  8. H. Hosseinzadeh, G. Karimi and M. Niapoor, Antidepressant effects of Crocus sativus stigma extracts and its constituents, crocin and safranal, in mice, J. Med. Plants, 3, 48 (2004).
  9. J. Escribano, G. L. Alonso, M. Coca-Prados and J. A. Fernandez, Crocin, safranal and picrocrocin from saffron (Crocus sativus L.) inhibit the growth of human cancer cells in vitro, Cancer Lett., 100, 23 (1996). https://doi.org/10.1016/0304-3835(95)04067-6
  10. D. L. Luthria, Y. Lu and K. M. John, Bioactive phytochemicals in wheat: Extraction, analysis, processing, and functional properties, J. Funct. Foods, 18, 910 (2015). https://doi.org/10.1016/j.jff.2015.01.001
  11. M. P. Kahkonen, A. I. Hopia and M. Heinonen, Berry phenolics and their antioxidant activity, J. Agric. Food Chem., 49, 4076 (2001). https://doi.org/10.1021/jf010152t
  12. H. J. Shin, A trend in research and development of natural gardenia pigments, KSBB Journal, 22, 271 (2007).
  13. T. Fuleki and F. J. Francis, Quantitative methods for anthocyanins, J. Food Sci., 33, 266 (1968). https://doi.org/10.1111/j.1365-2621.1968.tb01365.x
  14. D. H. Jin, H. S. Kim, J. H. Seong and H. S. Chung, Comparison of total phenol, flavonoid contents, and antioxidant activities of Orostachys japonicus A. Berger extracts, J. Environ. Sci. Int., 25, 695 (2016). https://doi.org/10.5322/JESI.2016.25.5.695
  15. T. Sun and C. T. Ho, Antioxidant activities of buckwheat extracts, Food Chem., 90, 743 (2005). https://doi.org/10.1016/j.foodchem.2004.04.035
  16. M. N. A. Rao, Nitric oxide scavenging by curcuminoids, J. Pharm. Pharmacol., 49, 105 (1997). https://doi.org/10.1111/j.2042-7158.1997.tb06761.x
  17. J. A. Lim, Y. S. Na and S. H. Baek, Antioxidative activity and nitrite scavenging ability of ethanol extract from Phyllostachys bambusoides, Korean J. Food Sci. Technol., 36, 306 (2004).
  18. S. Kato, H. Aoshima, Y. Saitoh and N. Miwa, Highly hydroxylated or $\gamma$ -cyclodextrin-bicapped water-soluble derivative of fullerene: The antioxidant ability assessed by electron spin resonance method and ${\beta}$-carotene bleaching assay, Bioorg. Med. Chem. Lett., 19, 5293 (2009). https://doi.org/10.1016/j.bmcl.2009.07.149
  19. M. Singhal, A. Paul and H. P. Singh, Synthesis and reducing power assay of methyl semicarbazone derivatives, J. Saudi Chem. Soc., 18, 121 (2014). https://doi.org/10.1016/j.jscs.2011.06.004
  20. N. Siriwardhana, K. W. Lee, Y. J. Jeon, S. H. Kim and J. W. Haw, Antioxidant activity of Hizikia fusiformis on reactive oxygen species scavenging and lipid peroxidation inhibition, Food Sci. Technol. Int., 9, 339 (2003). https://doi.org/10.1177/1082013203039014
  21. T. A. Holton and E. C. Cornish, Genetics and biochemistry of anthocyanin biosynthesis, The Plant Cell, 7, 1071 (1995). https://doi.org/10.1105/tpc.7.7.1071
  22. Z. Lin, J. Fischer and L. Wicker, Intermolecular binding of blueberry pectin-rich fractions and anthocyanin, Food Chem., 194, 986 (2016). https://doi.org/10.1016/j.foodchem.2015.08.113
  23. A. Sgambato, R. Ardito, B. Faraglia, A. Boninsegna, F. I. Wolf and A. Cittadini, Resveratrol, a natural phenolic compound, inhibits cell proliferation and prevents oxidative DNA damage, Mutat. Res./Genet. Toxicol. Environ. Mutagen., 496, 171 (2001). https://doi.org/10.1016/S1383-5718(01)00232-7
  24. Y. Cai, Q. Luo, M. Sun and H. Corke, Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer, Life Sci., 74, 2157 (2004). https://doi.org/10.1016/j.lfs.2003.09.047
  25. R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang and C. Rice-Evans, Antioxidant activity applying an improved ABTS radical cation decolorization assay, Free Radical Biol. Med., 26, 1231 (1999). https://doi.org/10.1016/S0891-5849(98)00315-3
  26. S. R. M. J. Moncada, R. M. L. Palmer and E. Higgs, Nitric oxide: physiology, pathophysiology, and pharmacology, Pharmacol. Rev., 43, 109 (1991).
  27. S. H. Snyder and D. S. Bredt, Biological roles of nitric oxide, Sci. American, 266, 68 (1992).
  28. H. Moshage, B. Kok, J. R., Huizenga and P. L. Jansen, Nitrite and nitrate determinations in plasma: a critical evaluation, Clin. Chem., 41, 892 (1995).
  29. D. Pastore, D. Trono, L. Padalino, S. Simone, D. Valenti, N. Di Fonzo and S. Passarella, Inhibition by ${\alpha}$-tocopherol and L-ascorbate of linoleate hydroperoxidation and ${\beta}$-carotene bleaching activities in durum wheat semolina, J. Cereal Sci., 31, 41 (2000). https://doi.org/10.1006/jcrs.1999.0278
  30. M. Senevirathne, S. H. Kim, N. Siriwardhana, J. H. Ha, K. W. Lee and Y. J. Jeon, Antioxidant potential of ecklonia cavaon reactive oxygen species scavenging, metal chelating, reducing power and lipid peroxidation inhibition, Food Sci. Technol. Int., 12, 27 (2006). https://doi.org/10.1177/1082013206062422
  31. O. Firuzi, A. Lacanna, R. Petrucci, G. Marrosu and L. Saso, Evaluation of the antioxidant activity of flavonoids by "ferric reducing antioxidant power" assay and cyclic voltammetry, Biochim. Biophys. Acta-Gen. Subj., 1721, 174 (2005). https://doi.org/10.1016/j.bbagen.2004.11.001
  32. E. N. Frankel, Lipid oxidation, Prog. Lipid Res., 19, 1 (1980). https://doi.org/10.1016/0163-7827(80)90006-5
  33. Y. Yamamoto, M. H. Brodsky, J. C. Baker and B. N. Ames, Detection and characterization of lipid hydroperoxides at picomole levels by high-performance liquid chromatography, Anal. Biochem., 160, 7 (1987). https://doi.org/10.1016/0003-2697(87)90606-3
  34. H. Esterbauer, Cytotoxicity and genotoxicity of lipid-oxidation products, American J. Clin. Nutr., 57, 779S (1993). https://doi.org/10.1093/ajcn/57.5.779S