Browse > Article
http://dx.doi.org/10.12925/jkocs.2017.34.1.91

Effect of Extracts produced from Gardenia jasminoides Seed Using Different Types of Solvents on Nitrogen Oxide Scavenging Activities and Lipid Peroxidation Inhibition  

Jin, Dong-Hyeok (Department of Food Science and Technology, Pusan National University)
Oh, Da-Young (Department of Food Science and Technology, Pusan National University)
Lee, Young-Geun (Department of Food Science and Technology, Pusan National University)
Kim, Han-Soo (Department of Food Science and Technology, Pusan National University)
Publication Information
Journal of the Korean Applied Science and Technology / v.34, no.1, 2017 , pp. 91-100 More about this Journal
Abstract
The object of this study was to measure the bioactivity and antioxidant activity of seed from Gardenia jasminoides Ellis fructus (GJE). GJE seeds were performed the extraction of them by chloroform:methanol (CM, 2:1, v/v), 70% ethanol and n-butanol. Sequentially, total phenol content, nitrogen oxide scavenging activity, antioxidant activity and lipid peroxidation inhibition activity of the extracts were investigated. Solvent extract bioactivity of increasing concentrations (0.2, 0.4, 0.6 mg/mL) were significantly increased (p<0.05). GJE seed extracts showed lower activity than positive control (ascorbic acid, BHA, trolox). The highest concentration of CM extracts was obtained in the same manner as the results of analysis of the total phenol contents of the GJE seed, and 70% ethanol extract showed the highest activity of reducing power. The water soluble carotenoids crocin and flavonoid were effective. As a result of this experiment. the seeds of GJE showed excellent antioxidant, and lipid peroxidation inhibitory properties.
Keywords
seed of Gardenia jasminoides Ellis fructus; antioxidant activity; anthocyanin; total phenol;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 K. Menrad, Market and marketing of functional food in Europe, J. Food Eng., 56, 181 (2003).   DOI
2 B. Halliwell, J. M. Gutteridge and C. E. Cross, Free radicals, antioxidants, and human disease: where are we now?, J. Lab. Clinic. Med., 119, 598 (1992).
3 Hogg, N., Darley-Usmar, V. M., Wilson, M. T., and Moncada, S, Production of hydroxyl radicals from the simultaneous generation of superoxide and nitric oxide. Biochemical Journal, 281, 419 (1992).   DOI
4 J. S. Hwang, B. H. Lee, X. An, H. R. Jeong, Y. E. Kim, I. Lee, H. Lee and D. O. Kim, Total phenolics, total flavonoids, and antioxidant capacity in the leaves, bulbs, and roots of Allium hookeri, Korean J. Food Sci. Technol., 47, 261 (2015).   DOI
5 H. Hosseinzadeh, G. Karimi and M. Niapoor, Antidepressant effects of Crocus sativus stigma extracts and its constituents, crocin and safranal, in mice, J. Med. Plants, 3, 48 (2004).
6 H. O. Edeoga, D. E. Okwu and B. O. Mbaebie, Phytochemical constituents of some Nigerian medicinal plants, African J. Biotechnol., 4, 685 (2005).   DOI
7 I. A. Lee, J. H. Lee, N. I. Baek and D. H. Kim, Antihyperlipidemic effect of crocin isolated from the fructus of Gardenia jasminoides and its metabolite crocetin, Biol. Pharm. Bull., 28, 2106 (2005).   DOI
8 T. Ochiai, S. Ohno, S. Soeda, H. Tanaka, Y. Shoyama and H. Shimeno, Crocin prevents the death of rat pheochromyctoma (PC-12) cells by its antioxidant effects stronger than those of ${\alpha}$-tocopherol, Neurosci. Lett., 362, 61 (2004).   DOI
9 J. Escribano, G. L. Alonso, M. Coca-Prados and J. A. Fernandez, Crocin, safranal and picrocrocin from saffron (Crocus sativus L.) inhibit the growth of human cancer cells in vitro, Cancer Lett., 100, 23 (1996).   DOI
10 D. L. Luthria, Y. Lu and K. M. John, Bioactive phytochemicals in wheat: Extraction, analysis, processing, and functional properties, J. Funct. Foods, 18, 910 (2015).   DOI
11 M. P. Kahkonen, A. I. Hopia and M. Heinonen, Berry phenolics and their antioxidant activity, J. Agric. Food Chem., 49, 4076 (2001).   DOI
12 H. J. Shin, A trend in research and development of natural gardenia pigments, KSBB Journal, 22, 271 (2007).
13 T. Fuleki and F. J. Francis, Quantitative methods for anthocyanins, J. Food Sci., 33, 266 (1968).   DOI
14 J. A. Lim, Y. S. Na and S. H. Baek, Antioxidative activity and nitrite scavenging ability of ethanol extract from Phyllostachys bambusoides, Korean J. Food Sci. Technol., 36, 306 (2004).
15 D. H. Jin, H. S. Kim, J. H. Seong and H. S. Chung, Comparison of total phenol, flavonoid contents, and antioxidant activities of Orostachys japonicus A. Berger extracts, J. Environ. Sci. Int., 25, 695 (2016).   DOI
16 T. Sun and C. T. Ho, Antioxidant activities of buckwheat extracts, Food Chem., 90, 743 (2005).   DOI
17 M. N. A. Rao, Nitric oxide scavenging by curcuminoids, J. Pharm. Pharmacol., 49, 105 (1997).   DOI
18 S. Kato, H. Aoshima, Y. Saitoh and N. Miwa, Highly hydroxylated or $\gamma$ -cyclodextrin-bicapped water-soluble derivative of fullerene: The antioxidant ability assessed by electron spin resonance method and ${\beta}$-carotene bleaching assay, Bioorg. Med. Chem. Lett., 19, 5293 (2009).   DOI
19 M. Singhal, A. Paul and H. P. Singh, Synthesis and reducing power assay of methyl semicarbazone derivatives, J. Saudi Chem. Soc., 18, 121 (2014).   DOI
20 N. Siriwardhana, K. W. Lee, Y. J. Jeon, S. H. Kim and J. W. Haw, Antioxidant activity of Hizikia fusiformis on reactive oxygen species scavenging and lipid peroxidation inhibition, Food Sci. Technol. Int., 9, 339 (2003).   DOI
21 T. A. Holton and E. C. Cornish, Genetics and biochemistry of anthocyanin biosynthesis, The Plant Cell, 7, 1071 (1995).   DOI
22 Z. Lin, J. Fischer and L. Wicker, Intermolecular binding of blueberry pectin-rich fractions and anthocyanin, Food Chem., 194, 986 (2016).   DOI
23 H. Moshage, B. Kok, J. R., Huizenga and P. L. Jansen, Nitrite and nitrate determinations in plasma: a critical evaluation, Clin. Chem., 41, 892 (1995).
24 A. Sgambato, R. Ardito, B. Faraglia, A. Boninsegna, F. I. Wolf and A. Cittadini, Resveratrol, a natural phenolic compound, inhibits cell proliferation and prevents oxidative DNA damage, Mutat. Res./Genet. Toxicol. Environ. Mutagen., 496, 171 (2001).   DOI
25 Y. Cai, Q. Luo, M. Sun and H. Corke, Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer, Life Sci., 74, 2157 (2004).   DOI
26 R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang and C. Rice-Evans, Antioxidant activity applying an improved ABTS radical cation decolorization assay, Free Radical Biol. Med., 26, 1231 (1999).   DOI
27 S. R. M. J. Moncada, R. M. L. Palmer and E. Higgs, Nitric oxide: physiology, pathophysiology, and pharmacology, Pharmacol. Rev., 43, 109 (1991).
28 S. H. Snyder and D. S. Bredt, Biological roles of nitric oxide, Sci. American, 266, 68 (1992).
29 D. Pastore, D. Trono, L. Padalino, S. Simone, D. Valenti, N. Di Fonzo and S. Passarella, Inhibition by ${\alpha}$-tocopherol and L-ascorbate of linoleate hydroperoxidation and ${\beta}$-carotene bleaching activities in durum wheat semolina, J. Cereal Sci., 31, 41 (2000).   DOI
30 M. Senevirathne, S. H. Kim, N. Siriwardhana, J. H. Ha, K. W. Lee and Y. J. Jeon, Antioxidant potential of ecklonia cavaon reactive oxygen species scavenging, metal chelating, reducing power and lipid peroxidation inhibition, Food Sci. Technol. Int., 12, 27 (2006).   DOI
31 H. Esterbauer, Cytotoxicity and genotoxicity of lipid-oxidation products, American J. Clin. Nutr., 57, 779S (1993).   DOI
32 O. Firuzi, A. Lacanna, R. Petrucci, G. Marrosu and L. Saso, Evaluation of the antioxidant activity of flavonoids by "ferric reducing antioxidant power" assay and cyclic voltammetry, Biochim. Biophys. Acta-Gen. Subj., 1721, 174 (2005).   DOI
33 E. N. Frankel, Lipid oxidation, Prog. Lipid Res., 19, 1 (1980).   DOI
34 Y. Yamamoto, M. H. Brodsky, J. C. Baker and B. N. Ames, Detection and characterization of lipid hydroperoxides at picomole levels by high-performance liquid chromatography, Anal. Biochem., 160, 7 (1987).   DOI