DOI QR코드

DOI QR Code

Application of Microbubble in MBR Process for Night Soil Treatment

분뇨처리를 위한 MBR공정에서 Microbubble의 적용

  • Lim, Ji-Young (Department of Civil & Environmental Engineering, Incheon National University) ;
  • Kim, Jin-Han (Department of Civil & Environmental Engineering, Incheon National University)
  • 임지영 (인천대학교 건설환경공학과) ;
  • 김진한 (인천대학교 건설환경공학과)
  • Received : 2017.02.09
  • Accepted : 2017.03.12
  • Published : 2017.03.30

Abstract

In this study, the microbubbles were applied to the MBR process for night soil treatment, and the removal efficiency was estimated. As a result of the this study, when the microbubble was supplied directly to the aerobic tank in which the membrane was submerged, excessive scum was generated so could not stable operation of the process. The SS removal efficiencies in the pre-treatment tank were 74.3%, 82.8%, 75.0%, 52.1% on average at the 2 kg, 4 kg, 6 kg, and $8kg\;COD_{Cr}/m^3$, respectively. The mean removal efficiencies were more than 99.4%, 94.0%, 74.1% for SS, $TCOD_{Cr}$, $SCOD_{Cr}$ by MBR process. On the other hand, when the microbubble are directly supplied to the aerobic tank, the microbubble and the scum are attached each other to accelerate the fouling. Therefore, it can be confirmed that stable treatment can be achieved by applying microbubble to the front of the bioreactor for removal of SS and oxidation of organic matters in high concentration organic wastewater treatment such as night soil.

본 연구에서는 고농도 유기성 폐수인 분뇨 처리를 위한 MBR 공정에 마이크로버블을 적용하여 처리효율을 검토하고, 안정적 운영의 가능성을 평가하고자 하였다. 연구결과, 마이크로버블을 분리막이 침지되어 있는 호기조에 직접 공급하였을 때에는 과도하게 스컴이 발생하여 처리공정의 안정적 운영이 불가능하였다. 생물반응조 전단에 마이크로버블을 공급하는 전처리조를 설치하여 고액분리와 유기물 산화를 실시한 다음 MBR 공정으로 처리한 결과 전처리조에서의 SS 제거율은 2kg, 4kg, 6kg, 그리고 $8kg\;COD_{Cr}/m^3{\cdot}day$의 유기물 부하에서 각각 평균 74.3%, 82.8%, 75.0%, 52.1%를 나타내었으며, 전체 처리공정 처리수의 SS 제거율은 평균 99.4% 이상이었다. 또한 최종처리수의 $TCOD_{Cr}$ 제거율은 평균 94.0% 이상이었으며, $SCOD_{Cr}$ 제거율은 평균 74.1% 이상이었다. 한편, 마이크로버블을 호기조에 직접 공급할 경우 마이크로버블과 오염물질들이 함께 분리막에 부착되어 fouling 현상이 가속되는 현상을 확인할 수 있었다. 따라서, 분뇨와 같은 고농도 유기성 폐수 처리공정에는 SS 제거와 유기물 산화를 목적으로 생물반응조 전단에 마이크로버블을 적용함으로써 안정적인 처리가 가능함을 확인 할 수 있었다.

Keywords

References

  1. Shin, D. H., Baek, B. D. and Chang, I. S., "Control of Membrane Fouling in Submerged Membrane Bioreactor(MBR) Using Air Scouring", Journal of Korean Society of Environmental Engineers, 30(9), pp. 948-954. (2008).
  2. Ministry of Agriculture, Food and Rural Affairs, Development of Solids/liquid Separation System of Swine Wastewater by Flotation Process with Micro-bubbles. (2001).
  3. Stephen, P. C., Matthew, W. A. and Maqsood, F., "Microbubble RO Membrane Cleaning Reduces Fouling on WWRO Plant", Desalination and Water Treatment, 55, pp. 2900-2908. (2015).
  4. Li, P., Tsuge, H. and Itoh, K., "Oxidation of Dimethyl Sulfoxide in Aqueous Solution Using Microbubbles", Industrial & Engineering Chemistry Research, 48(17), pp. 8048-8053. (2009). https://doi.org/10.1021/ie801565v
  5. Kawahara, A., Sadatomi, M., Matsuyama, F., Matsuura, H., Tominaga, M. and Noguchi, M. "Prediction of Microbubble Dissolution Characteristics in Water and Sea Water", Experimental Thermal and Fluid Science, 33(5), pp. 883-894. (2009). https://doi.org/10.1016/j.expthermflusci.2009.03.004
  6. Agarwal, A., Ng, W. J. and Liu, Y. "Principle and Applications of Microbubble and Nanobubble Technology for Water Treatment", Chemosphere, 84(9), pp. 1175-1180. (2011). https://doi.org/10.1016/j.chemosphere.2011.05.054
  7. Marui, T., "An Introduction to Micro/Nano-Bubbles and Their Applications", Systemics, Cybernetics and Informatics, 11(4), pp. 68-73. (2013).
  8. Cha, H. S., "Present State and Future Prospect for Microbubble Technology", Bulletin of Food Technology, 22(3), pp. 544-552. (2009).
  9. Li, P., Takahashi, M. and Chiba, K., "Enhanced Free-Radical Generation by Shrinking Microbubbles Using a Copper Catalyst", Chemosphere, 77, pp. 1157-1160. (2009). https://doi.org/10.1016/j.chemosphere.2009.07.062
  10. Lim, J. Y., Kim, H. S., Park, S. Y. and Kim, J. H., "Pre-treatment Characteristics of Night Soil by Microbubble", Journal of the Korea Organic Resources Recycling Association, 24(4), pp. 31-37. (2016).
  11. Lim, J. Y., Kim, H. S., Park, S. Y. and Kim, J. H., "Evaluation of Characteristics for Microbubble Generation According to Venturi Nozzle Specification", Journal of the Korea Academia-Industrial Cooperation Society, 16(9), pp. 6397-6402. (2015). https://doi.org/10.5762/KAIS.2015.16.9.6397
  12. APHA(American Public Health Association), Standard Methods for the Examination of Water and Wastewater, 17th ed., Washington DC, USA. (1989).
  13. Ministry of Environment, Standard Methods for Examination of Water Quality. (2014).
  14. Jang, J. K., Kim, M. Y., Sung, J. H., Chang, I. S., Kim, T. Y., Kim, H. W., Kang, Y. K. and Kim, Y. H., "Effect of the Application of Microbubbles and/or Catalyst on the Sludge Reduction and Organic Matter of Livestock Wastewater", Journal of Korean Society of Environmental Engineers, 37(10), pp. 558-562. (2015). https://doi.org/10.4491/KSEE.2015.37.10.558
  15. Na, Y. M., Bae, J. B., Moon, T. H., Hwang, Y. Y., Lee, Y. W., "Livestock Wastewater Treatment Using MBR/NF/RO and Application of Post-Denitrification and Air Flotation Process to Treat Excess Sludge and NF/RO Brine", Journal of Korean Society of Environmental Engineers, 35(6), pp. 407-414. (2013). https://doi.org/10.4491/KSEE.2013.35.6.407

Cited by

  1. 가축분뇨 내 대장균 제거와 부유물질 저감 효율 향상을 통한 추비 생산용 미세기포 부상분리와 마이크로 필터 연계 시스템 개발 vol.22, pp.2, 2017, https://doi.org/10.5762/kais.2021.22.2.139