DOI QR코드

DOI QR Code

Effects of Biochar Pellet Application on the Growth of Pepper for Development of Carbon Sequestration Technology in Agricultural Practice

토양 탄소 격리 기술 개발을 위한 바이오차 팰렛 시용에 따른 고추 생육 효과

  • Shin, JoungDu (Department of Climate Change and Agroecology, National Institute of Agricultural Sciences, RDA) ;
  • Choi, YoungSu (Department of Climate Change and Agroecology, National Institute of Agricultural Sciences, RDA) ;
  • Lee, SunIl (Department of Climate Change and Agroecology, National Institute of Agricultural Sciences, RDA) ;
  • Hong, SeungChang (Department of Climate Change and Agroecology, National Institute of Agricultural Sciences, RDA) ;
  • Lee, JongSik (Department of Climate Change and Agroecology, National Institute of Agricultural Sciences, RDA)
  • 신중두 (국립농업과학원 기후변화생태과) ;
  • 최용수 (국립농업과학원 기후변화생태과) ;
  • 이선일 (국립농업과학원 기후변화생태과) ;
  • 홍성창 (국립농업과학원 기후변화생태과) ;
  • 이종식 (국립농업과학원 기후변화생태과)
  • Received : 2017.02.22
  • Accepted : 2017.03.09
  • Published : 2017.03.30

Abstract

Objective of this experiment was to evaluate the effect on pepper growth to application of biochar pellet in case of development of soil carbon sequestration technology. The treatments consisted of control as a general agricultural practice method, pellet (100% pig compost), biochar pellets with mixture ratio of pig compost (9:1, 8:2, 6:4, 4:6, 2:8) for comparison of total carbon contents, $NH_4-N$ concentrations, and total biomass in the pots applied with biochar pellets after pepper harvesting. The application rates of biochar pellet was 8.8 g/pot regardless of their mixed rates based on recommended amount of application (440 kg/10a) for pepper cultivation. For the experimental results, Total carbon contents in the treatments were low from 1.8 to 2.6 fold as compared to the control. $NH_4-N$ concentrations were not significantly different among the treatment plots as compared to the control, but $NO_3-N$ was not detected in the all treatment plots. However, total biomass was not only significantly different between the control and 2:8 (biochar : pig compost) biochar pellet application plot even if the other treatments were low. Therefore, this biochar pellet application might be further modified for soil carbon sequestration in agricultural farming practices.

본 실험의 목적은 토양탄소 격리 기술을 개발하기 위한 바이오차 팰렛 시용에 따른 고추 생육 효과를 평가하는 것이다. 처리는 고추 수확 후 총 탄소 함량, 암모늄태 질소의 농도 및 총 바이오매스량 비교를 위해 일반적인 영농 방법으로서 대조구, 돈분 팰렛, 바이오차와 돈분 퇴비 혼합 비율별 바이오차 팰렛 시용구 (9:1, 8:2, 6:4, 4:6, 2:8)로서 구성되어 있다. 바이오차 팰렛의 사용량은 고추 재배를 위한 추천 시용량 (440 kg/10a)기준으로 혼합 비율에 관계없이 8.8 g/pot이었다. 실험 결과로서 총 탄소 함량은 대조구와 비교하여 처리구에서 1.8-2.6배 낮게 나타났다. 암모늄태 질소의 농도는 대조구와 비교하여 처리구들 사이에 유의차가 인정되지 않았으며, 질산태 질소는 모든 처리구에서 검출되지 않았다. 그렇지만, 총 바이오매스량은 다른 처리구에서는 낮게 나타났다 할지라도 대조구와 2:8 바이오차 팰렛 처리구 사이에는 유의차가 인정되지 않았다. 따라서 이 바이오차 팰렛 시용은 농사 활동에 있어서 탄소격리를 위해서는 더욱더 연구되어야 한다.

Keywords

References

  1. Atkinson, C. J., Fitzgerald, J. D., & Hipps, N. A., "Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils : a review", Plant and Soil, 337(1-2), pp. 1-18. (2010). https://doi.org/10.1007/s11104-010-0464-5
  2. Laird, A. D. "The charcoal vision: a win-win-win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality", Agron. J., 100(1), pp. 178-184. (2008). https://doi.org/10.2134/agronj2007.0161
  3. MIFAFF, Annual Statistics in Food, Agriculture, Fisheries and Forestry in 2009. Korean Ministry for Food, Agriculture, Fisheries and Forestry. (2010).
  4. Hammes, K., Schmidt, M., "Changes in biochar in soil", In Lemann, J. & Joseph, S. (Eds.), Biochar for Environmental Management, pp. 169-182, Earthscan. (2009).
  5. Lehmann, J., Rilling, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D., "Biochar effects on soil biota : a review", Soil Biology and Biochemistry, 43, pp. 1812-1836. (2011). https://doi.org/10.1016/j.soilbio.2011.04.022
  6. Kimble, J. M., Lal, R., & Follett, R. R., "Agricultural practices and policy options for carbon sequestration : What we know and where we need to go", In Kimble, J. M., Lal, R., Follet, R. F.(Eds.), Agricultural practices and policies for carbon sequestration in soil, New York, Lewis Publishers, p. 512. (2002).
  7. Batjes, N. H., "Total carbon and nitrogen in the soils of the world", European Journal of Soil Science, 47, pp. 151-163. (1996). https://doi.org/10.1111/j.1365-2389.1996.tb01386.x
  8. Rondon, M., Ramirez, J.A. and Lehmann, J., Greenhouse gas emissions decrease with charcoal additions to tropical soils, http://soilcarbonenter.k-state.edu/conference/USDA/Abstracts/html/Abstract/Rondon.htm. (2005).
  9. Shin, J., Lee, S., Park, W., Choi, Y., Hong, S., Park, S., "Carbon sequestration in soil cooperated with organic composts and bio-char during corn (Zea mays) cultivation", J. of Agri. Chem. and Envi. 3, pp. 151-155. (2014).
  10. Fernandez-Escobar, R., Benlloch, M., Herrera, E., Garcia-Novelo, J.M., "Effect of traditional and slow-release N fertilizers on growth of olive nursery plants and N losses by leaching", Scientia Horticulturae, 101(1-2), pp. 39-49. (2004). https://doi.org/10.1016/j.scienta.2003.09.008
  11. Shin, J., Choi, S. Shin, J.H., "Profit Analysis by Soil Carbon Sequestration with different Composts and Cooperated with Biochar during Corn (Zea mays) Cultivation Periods in Sandy Loam Soil", J. of Agri. Chem. and Envi. 5, pp. 107-113. (2016).
  12. Mathews, J.A., "Carbon-negative biofuels", Energy Policy, 36, pp. 940-945. (2008). https://doi.org/10.1016/j.enpol.2007.11.029