• Title/Summary/Keyword: Biochar pellet

Search Result 11, Processing Time 0.031 seconds

Evaluation of Efficiency to Plant Growth in Horticultural Soil Applied Biochar Pellet for Soil Carbon Sequestration (토양 탄소 격리 적용을 위한 바이오차 팰렛 혼합 상토를 사용한 작물 재배 효율성 평가)

  • Shin, JoungDu;Choi, YoungSu;Choi, Eunjung;Kim, MyungSook;Heo, JeongWook
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.3
    • /
    • pp.73-78
    • /
    • 2017
  • Objective of this experiment was to evaluate efficiency of application of biochar pellet in case of application of soil carbon sequestration technology. The treatments were consisted of control as general agricultural practice method, pellet(100% pig compost), biochar pellets with mixture ratio of pig compost(9:1, 8:2, 6:4, 4:6, 2:8) for comparatives of pH, EC, $NH_4-N$ and $NO_3-N$ concentrations, and yields in the nursery bed applied biochar pellets after lettuce harvesting. The application rates of biochar pellet was 6.6g/pot regardless of their mixed rates based on recommended amount of application (330kg/10a) for lettuce cultivation. pH in the nursery bed applied different biochar pellets after lettuce harvesting was only increased in the treatment plot of pig compost pellet application, but decreased in 4:6 and 2:8 pellet application plots. However, EC was observed to be not significantly different among the treatments. $NH_4-N$ concentration was only increased in the treatment plot of pig compost pellet application, but $NO_3-N$ concentrations were decreased as compared to the control. Yields in the treatments of 9:1, 8:2 and 4:6 biochar pellet application plot were increased from 9.5% to 11.4%. Therefore, this biochar pellet application might be useful for soil carbon sequestration and greenhouse gas mitigation in the agricultural farming practices because it was appeared to be a positive effect on lettuce growth.

Effects of Biochar Pellet Application on the Growth of Pepper for Development of Carbon Sequestration Technology in Agricultural Practice (토양 탄소 격리 기술 개발을 위한 바이오차 팰렛 시용에 따른 고추 생육 효과)

  • Shin, JoungDu;Choi, YoungSu;Lee, SunIl;Hong, SeungChang;Lee, JongSik
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.1
    • /
    • pp.87-92
    • /
    • 2017
  • Objective of this experiment was to evaluate the effect on pepper growth to application of biochar pellet in case of development of soil carbon sequestration technology. The treatments consisted of control as a general agricultural practice method, pellet (100% pig compost), biochar pellets with mixture ratio of pig compost (9:1, 8:2, 6:4, 4:6, 2:8) for comparison of total carbon contents, $NH_4-N$ concentrations, and total biomass in the pots applied with biochar pellets after pepper harvesting. The application rates of biochar pellet was 8.8 g/pot regardless of their mixed rates based on recommended amount of application (440 kg/10a) for pepper cultivation. For the experimental results, Total carbon contents in the treatments were low from 1.8 to 2.6 fold as compared to the control. $NH_4-N$ concentrations were not significantly different among the treatment plots as compared to the control, but $NO_3-N$ was not detected in the all treatment plots. However, total biomass was not only significantly different between the control and 2:8 (biochar : pig compost) biochar pellet application plot even if the other treatments were low. Therefore, this biochar pellet application might be further modified for soil carbon sequestration in agricultural farming practices.

Characteristics of Nutrient Release of Biochar Pellets through Soil Column during Rice Cultivation (토양 Column을 이용한 벼 재배 시 바이오차 팰렛의 양분용출 특성)

  • Shin, JoungDu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.3
    • /
    • pp.63-70
    • /
    • 2018
  • This experiment was conducted to investigate nutrient leaching and mobility through soil column for application of biochar pellet during rice cultivation. For nutrient leaching through soil column experiment, it was also consisted with four treatments as control, 100% of pig manure compost pellet (PMCP), biochar pellet (pig manure compost:biochar, 6:4)(BP), and slow release fertilizer (SRF). For experimental results, it was observed that $NH_4-N$ concentration in the leachate was gradually decreased at pick of 35 days and $NO_3-N$ concentration was highest from 60 to 98 days after transplanting. $PO_4-P$ concentration in the leachate was shown to be lowest in the PMCP and BP. K concentration in the leachate was highest in the control, but lowest in SRF. For mobility of nutrient in soil depths, it shown that $NH_4-N$ concentrations were highest from 40 to 60cm and did not significantly different among treatments except the control. It was observed that the deeper depth, the higher concentration for $NH_4-N$ concentrations, but for $PO_4-P$ concentrations the deeper depth, the lower concentration. And also $PO_4-P$ concentration was highest in the control. For K mobility in soil, its pattern was appeared to be approximately same between the control and PMCP, and between BP and SRF. Therefore, it might be potential to be applied biochar pellet to reduce mobility of plant nutrients for rice cultivation.

Effect of different biochar formulations on the growth of cherry tomatoes

  • Lee, Jae-Han;Luyima, Deogratius;Ahn, Ji-Young;Park, Seong-Yong;Choi, Bong-Su;Oh, Taek-Keun;Lee, Chang-Hoon
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.4
    • /
    • pp.931-939
    • /
    • 2019
  • Biochar is a solid carbon material made by pyrolyzing a biomass under limited oxygen conditions. Biochar has been reported to confer various benefits, such as increased soil productivity, pollutant absorption, and reduced greenhouse gas. In this study, oak pyrolyzed at 600℃ for 3 hours was either powdered or pelleted. Each of the biochar types was added to the soil at a rate of 2%. The control did not receive any biochar while a combination of the biochar and NPK treatment (biochar 2% + NPK) was also included. The cherry tomatoes were grown in greenhouse pots for 50 days to compare the growth characteristics of the different treatments. The cherry tomato with the powdered biochar 2% + NPK treatment had the heaviest plant fresh shoot weight of 276.4 g and the highest chlorophyll content of 59.3 SPAD. The control had the lightest plant fresh shoot weight of 44.2 g and a chlorophyll content of 26.5 SPAD. Both forms of biochar affected the chemical properties of the soil, increased the pH, electrical conductivity, available phosphate, total carbon and total nitrogen and positively influenced the cherry tomato growth and productivity. From the above results, therefore, both biochar forms are suited for use as soil amendments.

Investigation of an Optimum Application Rate of Blended Biochar Pellet as Slow Release Fertilizer during Cabbage Cultivation (배추재배 시 바이오차 펠렛 완효성 비료의 적정 시용량 구명)

  • Kim, HuiSeon;Yun, SeokIn;Jang, Eunsuk;Shin, JoungDu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.1
    • /
    • pp.49-56
    • /
    • 2019
  • This experiment was conducted to select an optimum application rate of blended biochar pellet as slow release fertilizer during cabbage cultivation. The blended biochar pellet made with a combination(4:6) of biochar and pig manure compost with unloading N, P, K solutions for adjusting about 9% of total nitrogen(TN). The treatments were consisted of the control as recommended application rates for cabbage cultivation in National Institute of Agricultural Sciences, N 40%, N 40% and 0.07M MgO and N 60 % of the blended biochar pellet, respectively, based on nitrogen application of recommended rates to cabbage cultivation. Changes of $NH_4-N$, $NO_3-N$, $P_2O_5$ and $K_2O$ concentrations in the soil and growth characteristic and yield components were investigated and observed during the cabbage cultivation. The experimental result shown that contents of $NH_4-N$, $NO_3-N$ and $K_2O$ of soil in the N 40% were significantly difference(p<0.01) with the control. $P_2O_5$ concentrations of soil in the N 40% were highest among the treatments. The fresh weight per cabbage in the N 40% was not significantly different(p>0.05) from the control, but in the N 40% and 0.07M MgO and N 60% was lower than that of the control. It was considered that an optimum blended biochar application rate for cabbage cultivation was 40% of recommended nitrogen application.

Influences of Major Nutrients in Surface Water, Soil and Growth Responses to Application of Supplemental Activated Biochar Pellet Fertilizers in Rice (Oryza sativa L.) Cultivation (벼 재배 시 활성 바이오차 팰렛 비료 시용에 따른 논 표면수와 토양의 주요 양분 함량 및 벼 생육에 미치는 영향)

  • Lee, SangBeom;Park, DoGyun;Jeong, ChangYoon;Nam, JooHee;Kim, MinJeong;Nam, HongShik;Shim, ChangKi;Hong, SeungGil;Shin, JoungDu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.2
    • /
    • pp.17-28
    • /
    • 2022
  • The application of supplemental activated biochar pellet fertilizers (ABPFs) was evaluated by investigating key factors such as changes of surface paddy water and soil chemical properties and rice growth responses during the growing season. The treatments consisted of control, activated rice hull biochar pellet (ARHBP-40%), and activated palm biochar pellet (APBP-40%) applications. It was shown that the lowest NH4+-N and PO4--P concentrations were observed in surface paddy water to the ARHBP-40%, while the NH4+-N concentration in the control was abruptly decreased until 30 days after transplant in the soil. However, the lowest NH4+-N concentration in the blended biochar application was 9.18 mg L-1 at 1 day of transplant, but its ABPFs application was observed to be less than 1 mg L-1 at 56 days after transplant. The lowest PO4--P concentration in paddy water treated ARHBP-40% ranged from 0.06 mg L-1 to 0.08 mg L-1 until 30 days after transplant among the treatments. For the paddy soil, the NH4+-N concentration in the control was abruptly decreased from 177.7 mg kg-1 to 49.4 mg kg-1, while NO3--N concentration was highest, 13.2 mg kg-1 in 14 days after transplant. The P2O5 concentrations in the soils increased from rice transplants until the harvesting period regardless of the treatments. The highest K2O concentration was 252.8 mg kg-1 in the APBP-40% at 84 days after transplant. For the rice growth responses, plant height in the control was relatively high compared to others, but grain yield was not significantly different between the control and ARHBP-40%. The application of ARHBP-40% can minimize nitrogen and phosphorous application rates into the agro-ecosystem.

Effect of different types of biochar on the growth of Chinese cabbage (Brassica chinensis)

  • Lee, Jae-Han;Seong, Chang-Jun;Kang, Seong-Soo;Lee, Ho-Cheol;Kim, Soo-Hun;Lim, Ji-Sun;Kim, Jae-Hong;Yoo, Joun-Hyuk;Park, Jung-Hyun;Oh, Taek-Keun
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.2
    • /
    • pp.197-203
    • /
    • 2018
  • Biochar is the carbon solid produced through the pyrolysis of a biomass from organic sources such as agricultural waste, animal manure, and sludge under limited or anaerobic conditions. Biochar has the effect of reducing greenhouse gases through the carbon sequestration method; additionally, biochar is known to function as a soil amendment. This experiment was conducted to evaluate the application of biochar on the growth characteristics of Chinese cabbage at Chungnam National University in Daejeon, Korea. The Chinese cabbage was grown for 50 days in a glasshouse in pots. A pruning branch was used to produce the bead and pellet forms of biochar through pyrolysis. The biochar was added to the soil at 0, 2, and 5% by weight. The Chinese cabbage with the 2% treatment of the bead form of biochar had the highest fresh weight ($149.43{\pm}15.92g\;plant^{-1}$) which was increased by 10% compared to the control ($136.91{\pm}31.46g\;plant^{-1}$). Moreover, for the 5% treatment of the bead form of biochar ($60.91{\pm}9.82g\;plant^{-1}$), the growth decreased by 57% compared to the control. As the content of the bead form of biochar increased, the shoot dry weight, leaf number, leaf length and lead width that appeared decreased. An increase in the total organic matter, Avail. $P_2O_5$, Ex. cation and EC was observed when the biochar content was increased. Our results support the application of 2% biochar in the bead form for increased growth of Chinese cabbage.

Evaluation of Agro- Environmental Effect and Soil Carbon Sequestration to different Application Ratios of Supplemented Biochar Pellet in the Paddy during Rice Cultivation (벼 재배 시 바이오차 펠렛 시용 수준에 따른 농업 환경 영향 및 토양 탄소격리 평가)

  • Shin, JoungDu;Park, Dogyun;Kim, Huiseon;Lee, SunIl;Hong, SeungGil
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.2
    • /
    • pp.114-121
    • /
    • 2020
  • BACKGROUND: Biochar-based fertilizers delay the nutrient release and feature a slow release effect for agricultural and environmental advantages. This experiment was conducted to evaluate agro-environmental effects of different application ratios of modified biochar pellets supplemented. METHODS AND RESULTS: The treatments consisted of the control, 40% N, 60% N and 60% N (0.07M MgO) of modified supplemented biochar pellets (MSBP), which were based on recommended ratio of nitrogen for rice cultivation. For the paddy water, the NH4-N and NO3-N concentrations in whole treatments rapidly increased at 84 days and 40 days after transplanting, respectively. The PO4-P concentrations in the MSBP were generally lower than those of the control. For the paddy soil, NH4-N concentrations in the MSBP were higher than those of the control at 5 days after transplanting, while NO3-N concentrations were not significantly different in the treatments through rice cultivation. P2O5 concentrations in the control were higher than those of the MSBP until 40 days after transplanting while K2O concentrations were not significantly different among the treatment. The highest carbon sequestration was 970 kg ha-1 in the 60% N (0.07M MgO), and the potential carbon storage in the 60% N (0.07M MgO) was higher at 222 kg ha-1 than the control during rice cultivation. It shown that the rice yield in the control was not significantly different from the 40% N and 60% N (0.07M MgO) application plots. CONCLUSION: Application of MSBP for rice cultivation was effective for carbon sequestration and agro-environmental effects even though nitrogen application ratio was reduced at 40% based on recommended application ratio of fertilizer.

Evaluation of Growth Characteristics and Lead Uptake of Lettuce under different application levels of Bottom Ash (저회의 시용수준에 따른 상추의 생육 및 납 흡수 특성 평가)

  • Cho, Han-Na;Lee, Seung-Gyu;Kim, So-Hui;Yun, Jin-Ju;Park, Jae-Hyuk;Cho, Ju-Sik;Kang, Se-Won
    • Korean Journal of Environmental Agriculture
    • /
    • v.41 no.3
    • /
    • pp.185-190
    • /
    • 2022
  • BACKGROUND: Most of the bottom ash(BA) from wood pellet-based thermal power plants that is not recycled is placed into landfill. BA has a function and structure similar to biochar. Hence, BA is classified as waste, but, it is predicted that BA can be used agricultural utilization. METHODS AND RESULTS: To investigate the effect of BA application on lettuce, growth characteristics and Pb contents were examined with BA application levels(0, 1, 2, 3 and 4 g/L), respectively, in hydroponic cultivation with Pb solution. Irrespective with BA application levels, the length, leaf number and fresh weight of lettuce in BA treatments were increased by 84.3~120, 36.2~39.0, and 215~322%, respectively, compared to the BA-0 treatment. The groups with BA treatments, Pb in the nutrient solution was adsorbed to the BA due to the surface area and functional groups of the BA, and the lettuce growth was maintained more smoothly than in the BA-0 treatment. BA application is considered to have created a favorable environment for lettuce growth in hydroponic cultivation with Pb solution. CONCLUSION(S): Although direct comparing the removal effect of heavy metal between BA and biochar is not present, the BA application in contaminated area suggested a significant meaning on the recycling waste, and increasing potential crop productivity by immobilizing heavy metal.