DOI QR코드

DOI QR Code

고농도 차아염소산나트륨 발생장치의 소독부산물 제어에 관한 연구

A Study on Control Disinfection By-products in High Sodium Hypochlorite Generation

  • 투고 : 2016.07.25
  • 심사 : 2016.12.12
  • 발행 : 2017.03.01

초록

상수도 소독공정에서 사용되고 있는 차아염소산나트륨은 일반적으로 유효염소 0.8 %로 생산되어 투입되고 있으며, 투입량이 많아질수록 소독부산물(Chlorate)이 증가되었고 수질기준을 초과하게 된다. 이에 따라 본 연구에서는 유효염소를 12%로 높인 차아염소산나트륨 발생장치의 전해조에 대해 소독부산물을 제어할 수 있도록 양극수 pH를 조절하였다. 실험결과 전해조 내 양극수 pH를 4.2(일반적인 차아염발생장치 운전 pH)에서 1.53으로 조절함으로서 Chlorate 농도는 95% 이상 낮아진 것으로 나타났으며, 또한 낮은 전류가 인가됨에 따라 양극의 효율도 15% 개선되는 결과를 얻었다. 이 장치의 개발로 대용량 상수도에서도 안전한 차아염소산나트륨의 적용이 가능하여 소독공정의 안전성 향상에 기여할 것으로 기대된다.

Sodium hypochlorite used in water disinfection processes is generally in the production of chlorine to 0.8%. As the dose of chlorine increases, disinfection by-products (Chlorate) also increase simultaneously and exceed water quality standards. In this study, the electrolytic cell of a sodium hypochlorite generator (12% chlorine) was adjusted to control the production of the disinfection by-products. As a result, it was possible to reduce Chlorate concentrations by more than 95% by adjusting the pH of the electrolytic cell from 1.53 to 4.2 (normal pH of the electrolytic cell). As a low current is required to obtain these results, a 15% improvement in the efficiency of the positive electrode is also observed. For the development of High Sodium Hypochlorite Generation can be used in a safe sodium hypochlorite solution, which is expected to contribute to improvement in the safety of the disinfection process.

키워드

참고문헌

  1. D. Lantagne, P.E., Preston, K., Blanton, E., Kotlarz, N., Gezagehn, H., van Dusen, E., Berens, J. and Jellison, K., 2011, "Hypochlorite Solution Expiration and Stability in Household Water Treatment in Developing Countries," Journal of Environmental Engineering, 137, Vol. 2, pp. 131- 136. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000299
  2. Snyder, S.A., Stanford, B.D. and Pisarenko, A.N., 2009, "HYPOCHLORITE-. An Assessment of Factors That Influence the Formation of Perchlorate and Other Contaminants," American Water Works Association.
  3. Taube, H. and Dodgen, H., 1949, "Application of Radioactive Chlorine to the Study of the Mechanisms of Reactions Involving Changes in the Oxidation State of Chlorine," Journal of the American Chemical Society, 71, Vol. 10, pp 3330- 3336. https://doi.org/10.1021/ja01178a016
  4. Vivion de Valera, 1953, "On the Theory of Electrochemical Chlorate Formation," 1953, Transactions of the Faraday Society, Vol. 49, pp. 1338-1351. https://doi.org/10.1039/tf9534901338
  5. Emmenegger, F. and Gordon, G., 1967, "The Rapid Interaction between Sodium Chlorite and Dissolved Chlorine," Vol. 6, No. 3, pp. 633-635. https://doi.org/10.1021/ic50049a048
  6. European Commission, 2010, "Best Available Technique(BAT) Reference Document for the Production of Chlor-Alkali," JRC Science and Policy Reports.
  7. View issue TOC, De Nora V, 1975 "Der Beitrag der Dimensionsstabilen Anoden (DSA) zur Chlor- Technologie," Chemie-Ingenieur-Technik, 4, Vol. 47, pp. 125-128.
  8. Foti, G., Mousty, C., Reid, V. and Comninells, Ch., 1998, "Characterization of DSA Type Electrode Prepared by Rapid Themal Decomposition of the Metal Precursor," Electrochimica Acta, 5, Vol. 44, pp. 813-818. https://doi.org/10.1016/S0013-4686(98)00240-0
  9. Mousty, C., Foti, G., Comninellis, Ch. and Reid, V., 1999, "Electrodhemical Behaviour of DSA Type Electrodes Prepared by Induction Heating," Electrochimica Acta, 3, Vol. 45, pp. 451-456. https://doi.org/10.1016/S0013-4686(99)00273-X
  10. Ihos, M., Bocea, G. and Manea, F., 2006, "DSA Type Electrodes Characterisation by Cyclic Voltammetry in the Presence of Surfactants," Chem. Bull. Politehnica Univ., 65, Vol. 51, pp. 54-56.
  11. House, J. E. and House, K. A., 2015, "Descriptive Inorganic Chemistry," 3rd, Academic Press, Cambridge, Messachusetts, pp. 279-280.