• Title/Summary/Keyword: Disinfection Process

Search Result 197, Processing Time 0.029 seconds

E. coli Inactivation using Complex Disinfection Process (복합 소독 공정을 이용한 E. coli 불활성화)

  • Kim, Dong-Seog;Park, Young-Seek
    • KSBB Journal
    • /
    • v.25 no.1
    • /
    • pp.33-40
    • /
    • 2010
  • Conventional disinfectants and disinfection method are expensive, hazardous and often require long periods of exposure. Recently, there is growing interest in complex disinfection process as a disinfection technique in medical instruments such as endoscope, hand piece bur to improve the disinfection efficiency and conveniency. The aim of this study was to evaluate the performance of a new complex process for the purpose of disinfection of Escherichia coli in water. Three single process (electrolysis, UV and ultrasonic process) was combined dual and triple disinfection process. The order of disinfection performance for E. coli in dual process lie in: Electrolysis + UV > Electrolysis + Ultrasonic > UV + Ultrasonic process. Disinfection efficiency of E. coli and degradation of N, N-Dimethyl-4-nitrosoaniline (RNO, indicating material of OH radical formation) of dual process was higher than that of the triple process (Electrolysis + UV + Ultrasonic process). In electrolysis + UV process, disinfection tendency was well agreed with RNO degradation tendency.

Inactivation of E. coli by Electrolysis+UV Process (전기+UV 공정에 의한 E. coli 불활성화)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.5
    • /
    • pp.667-673
    • /
    • 2009
  • This study has carried out to evaluate the performance of single (electrolysis, UV and ultrasonic process) and complex process (Electrolysis+UV, UV+Ultrasonic and Electrolysis+Ultrasonic) for the purpose of disinfection of Escherichia coli in water. The order of disinfection performance for E. coli in single process lie in: Electrolysis ${\fallingdotseq}$ UV >> ultrasonic process. OH radical was not produced in single disinfection process. Among the three kinds of complex process, disinfection performance of the Electrolysis+UV was higher than that of the other process (UV+Ultrasonic and Electrolysis+Ultrasonic). It demonstrated a synergetic effect between the UV and electrolysis. When the use of $Na_2SO_4$ as electrolyte instead of NaCl, current increase or more reaction time was needed for the complete disinfection. The disinfection performance of pre-electrolysis (20 W, 30sec) and post-UV (10 W, 30 sec) was higher than that of the simultaneous electrolysis+UV process at same electric power (30 W, 30 second).

Effect of Disinfection Process Combination on E. coli Deactivation and Oxidants Generation (E. coli 불활성화와 산화제 생성에 미치는 소독 공정 결합의 영향)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.20 no.7
    • /
    • pp.891-898
    • /
    • 2011
  • The aim of this research was to evaluate the effect of combination of disinfection process (electrolysis, UV process) on Escherichia coli (E. coli) disinfection and oxidants (OH radical, $ClO_2$, HOCl, $H_2O_2$ and $O_3$) generation. The effect of electrolyte type (NaCl, KCl and $Na_2SO_4$) on the E. coli disinfection and oxidants generation were evaluated. The experimental results showed that performance of E. coli disinfection of electrolysis and UV single process was similar. Combination of electrolysis and UV process enhanced the E. coli disinfection and 4-carboxybenzaldehyde (4-CBA, indicator of the generation of OH radical) degradation. It is clearly showed synergy effect on disinfection and OH radical formation. However chlorine ($ClO_2$, HOCl) and oxygen type ($H_2O_2$, $O_3$) oxidants were decreased with the combination of two process. In electrolysis + UV complex process, electro-generated $H_2O_2$ and $O_3$ were reacted with UV light of UV-C lamp and increased 4-CBA degradation(increase OH radical). Disinfection of electrolyte of chlorine type was higher than that of the sulfate type electrolyte due to the higher generation of OH radical and oxidants.

A Comparison of Single Disinfection Process for Inactivation of E. coli (E. coli 불활성화를 위한 단일 소독 공정의 비교)

  • Kim, Dong-Seog;Song, Seung-Koo;Park, Young-Seek
    • KSBB Journal
    • /
    • v.25 no.1
    • /
    • pp.25-32
    • /
    • 2010
  • This study was carried out to evaluate the performance of three kinds of single process (electrolysis, UV and ultrasonic process) for the purpose of disinfection of Escherichia coli in water. Among the five kinds of electrode material, disinfection performance of Ir electrode was higher than that of the other electrodes. The order of disinfection performance for E. coli in single process lies in: electrolysis > UV $\gg$ ultrasonic process. Performance of the three single processes was increased with the increase of the electric power. Disinfection efficiency of the three processes was increased with the decrease of the pH. Disinfection of the UV process were decreased by the increase of NaCl dosage and air flow rate. However, ultrasonic process was not affected above two parameters. OH radical was not produced in UV and ultrasonic process. E. coli disinfection of the electrolysis process was well agreed with RNO degradation tendency, except pH.

Characteristics of Disinfection Performance in Water Treatment Plants with Introducing Treatment Technigue Requirement (정수 처리기술 기준 도입을 앞둔 전국 정수장의 소독능 관리 현황 및 특색)

  • Yeom, Cheolmin;Cho, Soonhaing;Jung, Haewoong;Yoon, Jeyong
    • Journal of Korean Society on Water Environment
    • /
    • v.18 no.3
    • /
    • pp.327-336
    • /
    • 2002
  • Disinfection process in water treatment plants (WTPs) is one of the most important step in order to inactivate waterborne disease. However, what is the necessary disinfection in WTPs was not properly established in Korea. This study was conducted to evaluate disinfection performance in nationwide water treatment plants (n=474). Disinfection requirement based on the SWTR (Surface Water Treatment Rule) of the U.S. (1-log Giardia removal) was chosen in estimating the compliance. The scope of unit process for evaluating disinfection performance includes postdisinfection process in clearwells, pipeline, and storage tank. The worst water quality condition in individual WTPs was applied for the disinfection performance evaluation. The major results are as follows. First, it was appeared that 184 WTPs (39 %) provided insufficient disinfection performance. Disinfection performance was significantly improved during past 2 years. The ratio of the number of WTPs providing insufficient disinfection performance in 1999 and 2001 was 78 % and 41 %, respectively. One of major factors for this improvement was due to the improvement of $T_{10}/T$ value in clearwell, as a result of modification of clearwell facility. Second, if disinfection criteria is 3-log Giardia inactivation at worst water quality condition, then 19 % of all WTPs can not meet this disinfection criteria. And if disinfection criteria is strengthened to 4-log Giardia inactivation, then 58 % of all WTPs can not meet this disinfection criteria. Since disinfection criteria is decided by contamination level of Giardia in source water, it also needs the investigation of Giardia occurrence in source water.

Disinfection of Wastewater by UV Irradiation: Influence of Hydrodynamics on the Performance of the Disinfection

  • Brahmi, Mounaouer;Hassen, Abdennaceur
    • Environmental Engineering Research
    • /
    • v.16 no.4
    • /
    • pp.243-252
    • /
    • 2011
  • Several mathematical relationships have been developed to describe bacterial responses to UV irradiation. Pseudomonas aeruginosa was taken as a bacterial model. The results obtained showed that the kinetics of disinfection is far to be as uniform. In fact, application of the model of Chick-Watson in its original form or modification, taking into account the speed change during the disinfection process, has not significantly improved results. The application of both models of Collins-Selleck and Hom constitute a major opportunity to simulate goodly the kinetics of UV disinfection. The results obtained showed that despite the major advantage held by applying the Hom model in this process of disinfection and for all strains studied, the model of Collins-Selleck gave the best results for the description of the UV inactivation process. The design of reactors, operating in continuous disinfection system, requires taking into account the hydrodynamic behaviour of water in the reactor. Knowing that a reduction of 4-log is necessary in the case of wastewater reuse for irrigation, a model integrating the expression of disinfection kinetics and the hydrodynamics through the UV irradiation room was proposed. The results highlight the interest to develop reactors in series working as four perfectly mixed reactors.

Effect of Water Quality of Artificial Sewage on E. coli Disinfection Using Electrolysis Process (전기분해 공정을 이용한 E. coli 소독에 미치는 인공하수 수질의 영향)

  • Park, Young-Seek;Kim, Dong-Seog
    • Journal of Environmental Science International
    • /
    • v.20 no.9
    • /
    • pp.1115-1124
    • /
    • 2011
  • There is an increasing incidence in health problems related to environmental issues that originate from inadequate treatment of sewage. This has compelled scientists to engage in innovative technologies to achieve a effective disinfection process. Electrolysis has emerged as one of the more feasible alternatives to conventional disinfection process. The objectives of the present paper were to investigate the effect of chemical characteristics on oxidant formation and Escherichia coli (E. coli) disinfection in synthetic sewage effluents. The influence of parameters such as COD, SS, T-N and T-P were investigated using laboratory scale batch reactor. The results showed that the higher COD, T-N and T-P concentration, the lower N, N-Dimethyl-4-nitrosoaniline (RNO, indicator of the generation of OH radical) degradation and E. coli disinfection was observed. The order of effect of RNO degradation and E. coli disinfection was T-P > COD > T-N > SS. When 4 parameter of water quality were worked simultaneously, oxidants formation and disinfection was decreased with increase of the concentration of sewage. To increase of the disinfection performance, the increase of disinfection time or electric power was need.

E. coli Disinfection Using a Multi Plasma Reactor (멀티 플라즈마 반응기를 이용한 E. coli 소독)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.2
    • /
    • pp.187-195
    • /
    • 2013
  • Objectives: For the practical application of the dielectric barrier discharge plasma reactor, a plasma reactor able to manage large volumes of water is needed. This study investigated the possibility of the practical application of a multi-plasma reactor which is a scaled-up version of a single plasma reactor. Methods: The multi-plasma reactor consists of several high-voltage transformers and plasma modules (discharge, ground electrodes and quartz dielectric tubes). The effects of water characteristics such as voltage (30-120 V), air flow rate (1-5 l/min), number of high-voltage transformers and plasma modules, and water quality on Escherichia coli (E. coli) disinfection and decrease of COD and $UV_{254}$ absorbance were investigated. Results: The experimental results showed that at a voltage of over 80 V, most of the E. coli were disinfected within 90 seconds. E. coli inactivation was not affected by the air flow rate. E. coli disinfection in the multiplasma process showed the traditional log-linear form of the disinfection curve. E. coli inactivation performance by transformer 3-Reactor 5 and transformer 3-Reactor 3 were similar. The disinfection performance of the UV process was affected by artificial sewage water. However, the plasma process was less affected by the artificial sewage within the standards for effluent water quality. Conclusions: Disinfection performance with several low voltages and plasma modules of three to five in number applied to the plasma process was higher than that concentrating a small amount of high voltage through a single plasma reactor. Removal of COD, $UV_{254}$ absorbance, and E. coli disinfection with the plasma process were better than with the UV process.

Feasibility Prediction-Based Obstacle Removal Planning and Contactable Disinfection Robot System for Surface Disinfection in an Untidy Environment (비정돈 환경의 표면 소독을 위한 실현성 예측 기반의 장애물 제거 계획법 및 접촉식 방역 로봇 시스템)

  • Kang, Junsu;Yi, Inje;Chung, Wan Kyun;Kim, Keehoon
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.3
    • /
    • pp.283-290
    • /
    • 2021
  • We propose a task and motion planning algorithm for clearing obstacles and wiping surfaces, which is essential for surface disinfection during the pathogen disinfection process. The proposed task and motion planning algorithm determines task parameters such as grasping pose and placement location during the planning process without using pre-specified or discretized values. Furthermore, to quickly inspect many unit motions, we propose a motion feasibility prediction algorithm consisting of collision checking and an SVM model for inverse mechanics and self-collision prediction. Planning time analysis shows that the feasibility prediction algorithm can significantly increase the planning speed and success rates in situations with multiple obstacles. Finally, we implemented a hierarchical control scheme to enable wiping motion while following a planner-generated joint trajectory. We verified our planning and control framework by conducted an obstacle-clearing and surface wiping experiment in a simulated disinfection environment.

Disinfection of Water by Ultrasonic Irradiation (초음파 검사에 의한 수중의 살균처리)

  • 손종렬;유병성
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.1
    • /
    • pp.54-61
    • /
    • 1999
  • The industrial techniques of ultrasound have been used in the various fields, such as cleaning, medical surgery, emulsification, cell disruption etc. Especially the application of cell disruption was interested in the field of disinfection process in water by ultrasonic irradiation. It has been recognized that the ultrasounds are irradiated in aqueous solution, cavitation bubbles are generated and shock waves of high temperature and pressure are emitted as the bubbles are developed and finally broken, which function as a energy source to promote reaction efficiencies of various kinds of chemical reactions such as disinfection reaction in water. Therefore, this study was performed to apply the ultrasound for the disinfection method of infected drinking raw water and to discuss the limiting factors such as pH, sample volume and reaction temperature influenced on the removal efficiency of E. coli from experimental analysis of the results obtained in bench-scale plant. For the experiments to measure the influence of reaction parameters in the ultrasonic disinfection process, escalated reactivity of aqueous solutions was excellent when pH in aqueous solution was low, and sample volume was small. On the contrary, the reactivity of disinfection became elevated when reaction temperature was high. It was found that the rate constant of disinfection reaction was applied by Chick's law, reaction kinetics of Chick's law was irreversible and pseudo-first order at all the tested conditions.As a conclusion it appeared that the technology using ultrasonic irradiation can be applied to the treatment of disinfection in infected water which are difficult to be treated by conventional methods.

  • PDF