DOI QR코드

DOI QR Code

Application of Alkali-Activated Ternary Blended Cement in Manufacture of Ready-Mixed Concrete

알칼리 활성화 3성분계 혼합시멘트의 레미콘 적용 시험

  • Received : 2016.09.30
  • Accepted : 2016.11.24
  • Published : 2017.02.20

Abstract

Cement industry is typical carbon-emission industry. If the industrial by-products(granulated blast-furnace slag (GGBFS), fly ash, etc.) are used a large amount, it might be able to reduce cement consumption and mitigate carbon emissions. In this case, however, decrease of early strength is relatively large. Therefore, there is a limitation in increase of the amount of substitute. Considering these circumstances, it would be a good solution to reduce carbon emissions in cement industry to improve the performances of mixed cement through proper alkali-activation in Portland blended cement using GGBFS or fly ash. Therefore, this study prepared concrete in ready-mixed concrete manufacturing facilities with an addition of a binder which used 2.0% modified alkali sulfate activator after mixing Portland cement, GGBFS and fly ash in the ratio of 4:4:2 and assessed its basic properties. The results found the followings: The use of modified alkali-sulfate activator slightly reduced slump and shortened setting time. As a result, bleeding capacity decreased while early strength improved. In addition, there is no big difference in carbonation resistance. It appears that there should be continued experiments and analyses on the related long-term aged specimens.

시멘트 산업은 대표적인 탄소 배출 산업으로서, 콘크리트에 산업부산물인 고로슬래그 미분말과 플라이애시를 다량 사용할 경우 시멘트 사용을 줄이고 탄소 배출을 저감할 수 있으나, 이러한 경우 초기강도의 저하가 비교적 크기 때문에 대체량 증대에 한계가 있다. 이러한 현실을 고려할 때 고로슬래그 미분말이나 플라이애시를 다량 활용한 포틀랜드 혼합 시멘트에 적절한 알칼리 활성화를 통해 혼합 시멘트의 성능을 보완하는 방안은 시멘트 산업 분야에서 탄소 배출을 저감할 수 있는 현실적인 방안이 될 수 있다. 이에 따라 본 보고에서는 보통포틀랜드 시멘트, 고로슬래그 미분말, 플라이애시를 4:4:2로 혼합하고 알칼리 설페이트계 활성화제(Modified Alkali Sulfate type)를 2.0% 사용한 결합재를 적용하여 레미콘(Ready-Mixed Concrete) 제조 시설에서 콘크리트를 제조하고 그 기초적인 특성을 평가하였다. 그 결과 알칼리 설페이트계 활성화제의 활용으로 슬럼프는 다소 감소하고 응결 시간이 단축되는 현상이 있었으나, 블리딩이 감소하고 조기 강도가 개선되었으며, 탄산화 저항성은 큰 차이가 없었다. 향후 이와 관련하여 장기 재령의 시험체를 대상으로 한 실험과 분석이 지속적으로 이루어져야 할 것으로 판단된다.

Keywords

References

  1. International Energy Agency(IEA) and World Business Council for Sustainable Development(WBCSD). Cement technology roadmap 2009. Paris(France):Corlet. 2010.
  2. Ryu DW, Kim WJ, Yang WH, You JH, Ko JW. An experimental study on the freezing-thawing and chloride resistance of concrete using high volumes of GGBS. Journal of the Korea Institute of Building Construction. 2012 Jun;12(3):.315-23. https://doi.org/10.5345/JKIBC.2012.12.3.315
  3. Ryu DW, Kim WJ, Yang WH, Park DC. Experimental study on the carbonation and drying shrinkage of concrete using high volumes of ground granulated blast-furnace slag. Journal of the Korea Institute of Building Construction. 2012 Aug;12(4):393-400. https://doi.org/10.5345/JKIBC.2012.12.4.393
  4. Yang WH, Ryu DW, Kim WJ, Park DC, Seo CH. An experimental study on early strength and drying shrinkage of high strength concrete using high volumes of ground granulated blast-furnace slag(GGBS). Journal of the Korea Institute of Building Construction. 2013 Aug;13(4):391-99. https://doi.org/10.5345/JKIBC.2013.13.4.391
  5. ACI Committee 206. Ground granulated blast-furnace slag as cementations constituent in concrete. ACI Materials Journal. 2009;84(34):327-42.
  6. Yang WH, Hwang JS, Jeon CS, Lee SH. An experimental study on the chloride attack resistibility of alkali-activated ternary blended cement concrete. Journal of the Korea Institute of Building Construction. 2016 Aug;16(4):321-9. https://doi.org/10.5345/JKIBC.2016.16.4.321
  7. Shi C, Krivenko PV, Roy D. Alkali-activated cement and concretes. New York(USA): Taylor & Francis; 2006. p. 1-4.
  8. Yang WH. Properties of alkali-activated portland blast-furnace slag cement concrete [Ph. D. Thesis]. [Seoul(Korea)]: Konkuk University; 2014. 98 p.
  9. Korean Standards Association. Method of test for slump of concrete [KS F 2402]. Seoul(Korea):Korean Standards Association; 2012.
  10. Korean Standards Association. Standard test method for air content of fresh concrete by the pressure method:air receiver method [KS F 2421]. Seoul (Korea):Korean Standards Association; 2011.
  11. Korean Standards Association. Standard test method for bleeding of concrete [KS F 2414]. Seoul (Korea):Korean Standards Association; 2015.
  12. Korean Standards Association. Testing method for time of setting of concrete mintures by pentration resistance [KS F 2414]. Seoul(Korea):Korean Standards Association; 2015.
  13. Korean Standards Association. Standard test method for compressive strength of concrete [KS F 2405]. Seoul(Korea):Korean Standards Association; 2010.
  14. Korean Standards Association. Standard test method for accelerated carbonation of concrete [KS F 2584]. Seoul (Korea):Korean Standards Association; 2015.
  15. Taylor HFW. Cement chemistry. UK:Thomas Telford Publishing Company Ltd; 1990. p. 236-7.
  16. Bakharev T, Sanjayan JG, Cheng YB. Resistance of alkali-activated slag concrete to carbonation. Cement and Concrete Research. 2001;31(9):1277-83. https://doi.org/10.1016/S0008-8846(01)00574-9
  17. Shi C. Corrosion resistance of alkali-activated slag cement. Advances in Cement Research. 2003;15(2):77-81. https://doi.org/10.1680/adcr.2003.15.2.77

Cited by

  1. Game Theory–Based Analysis of Decision Making for Coastal Adaptation under Multilateral Participation vol.34, pp.6, 2018, https://doi.org/10.1061/(ASCE)ME.1943-5479.0000637