• Title/Summary/Keyword: carbonation

Search Result 795, Processing Time 0.028 seconds

Research on chloride ion diffusivity of concrete subjected to CO2 environment

  • Zhang, Shiping;Zhao, Binghua
    • Computers and Concrete
    • /
    • v.10 no.3
    • /
    • pp.219-229
    • /
    • 2012
  • Carbonation is a widespread degradation of concrete and may be coupled with more severe degradations. An experimental investigation was carried out to study the effect of carbonation on chloride ion diffusion of concrete. The characteristic of concrete after carbonation was measured, such as carbonation depth, strength and pore structure. Results indicated that carbonation depth has a good linear relation with square root of carbonate time, and carbonation can improve compressive strength, but lower flexural strength. Results about pore structure of concrete before and after carbonation have shown that carbonation could cause a redistribution of the pore sizes and increase the proportion of small pores. It also can decrease porosities, most probable pore size and average pore diameters. Chloride ion diffusion of concrete after carbonation was studied through natural diffusion method and steady state migration testing method respectively. It is supposed that the chloride ion concentration of carbonation region is higher than that of the sound region because of the separation of fixed salts, and chloride ion diffusion coefficient was increased due to carbonation action evidently.

Study on the Cargonation Properties of Fly Ash Concrete using a Vacuum Instrument

  • Jung, Sang-Hwa;Yoo, Sung-Won;Chae, Seong-Tae
    • Corrosion Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.186-192
    • /
    • 2007
  • Carbonation is one of the most important factors causing the corrosion of reinforcement concrete. Nevertheless, experimental studies on the concrete carbonation have not been carried out sufficiently because of the slow process of carbonation process. Therefore, this study adopts an experimental system exploiting a vacuum instrument that has been recently developed to accelerate carbonation instead of existing experimental system to conduct rapid carbonation tests on Portland cement and fly-ash cement concretes. Test results revealed that, compared to water-cement ratio of 40%, the carbonation depth increases from 103% to 138% for an increase of water-cement ratio from 45% to 60%. These results are larger than the carbonation depths obtained by mathematical model, and such difference is increasing with larger water-cement ratios. The results also indicated that larger fly-ash contents lead to sharp increase of the carbonation depth, which is in agreement with previous experimental researches. The adoption of the new accelerated carbonation test system enabled to shorten effectively the time required to produce experimental data compared to the existing carbonation test method. The experimental data obtained in this study together with ongoing acquisition of data using the new carbonation test method are expected to contribute in the understanding of the carbonation process of concrete structures in Korea.

Non-destructive assessment of carbonation in concrete using the ultrasonic test: Influenced parameters

  • Javad Royaei;Fatemeh Nouban;Kabir Sadeghi
    • Structural Engineering and Mechanics
    • /
    • v.89 no.3
    • /
    • pp.301-308
    • /
    • 2024
  • Concrete carbonation is a continuous and slow process from the outside to the inside, in which its penetration slows down with the increased depth of carbonation. In this paper, the results of the evaluation of the measurement of concrete carbonation depth using a non-destructive ultrasonic testing method are presented. According to the results, the relative nonlinear parameter caused more sensitivity in carbonation changes compared to Rayleigh's fuzzy velocity. Thus, the acoustic nonlinear parameter is expected to be applied as a quantitative index to recognize carbonation effects. In this research, combo diagrams were developed based on the results of ultrasonic testing and the experiment to determine carbonation depth using a phenolphthalein solution, which could be considered as instructions in the projects involving non-destructive ultrasonic test methods. The minimum and maximum accuracy of this method were 89% and 97%, respectively, which is a reasonable range for operational projects. From the analysis performed, some useful expressions are found by applying the regression analysis for the nonlinearity index and the carbonation penetration depth values as a guideline.

Carbonation depth estimation in reinforced concrete structures using revised empirical model and oxygen permeability index

  • Chandra Harshitha;Bhaskar Sangoju;Ramesh Gopal
    • Computers and Concrete
    • /
    • v.31 no.3
    • /
    • pp.241-252
    • /
    • 2023
  • Corrosion of rebar is one of the major deteriorating mechanisms that affect the durability of reinforced concrete (RC) structures. The increase in CO2 concentration in the atmosphere leads to early carbonation and deterioration due to corrosion in RC structures. In the present study, an attempt has been made to modify the existing carbonation depth prediction empirical model. The modified empirical model is verified from the carbonation data collected from selected RC structures of CSIR-SERC campus, Chennai and carbonation data available from the reported literature on in-situ RC structures. Attempt also made to study the carbonation depth in the laboratory specimens using oxygen permeability index (OPI) test. The carbonation depth measured from RC structures and laboratory specimens are compared with estimated carbonation depth obtained from OPI test data. The modified empirical model shows good correlation with measured carbonation depth from the identified RC structures and the reported RC structures from the literature. The carbonation depth estimated from OPI values for both in-situ and laboratory specimens show lesser percentage of error compared to measured carbonation depth. From the present investigation it can be said that the OPI test is the suitable test method for both new and existing RC structures and laboratory RC specimens.

An Experimental Study on Carbonation Resistance of Concrete Depending on Surface Treatment of Lightweight Aggregates (경량골재의 표면처리에 따른 콘크리트의 탄산화 저항성에 관한 실험적 연구)

  • Eom, In-Hyeok;On, Jea-Hoon;Kim, Young-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.89-91
    • /
    • 2012
  • The purpose of this study is to investigate the mechanical property and carbonation resistance of concretes using surface treated lightweight aggregate. In order to evaluate mechanical property and carbonation resistance, slump, compressive strength, and carbonation depth are tested. Slump of concretes using surface treated lightweight aggregate measured 120~125mm, which are lower than slump of NWAC. Compared to compressive strength of NWAC, compressive strength of concretes using surface treated lightweight aggregate showed a level of 82.8~95.9%. In carbonation resistance test, carbonation depth of concretes using surface treated lightweight aggregate measured 10.2~11.3mm, which are lower than carbonation depth of NWAC. As a result, it is found that compressive strength is decreased slightly but carbonation resistance is improved, in case of using surface treated lightweight aggregate.

  • PDF

Examination on Required Cover Depth to Prevent Reinforcement Corrosion Risk in Concrete

  • Yoon, In-Seok
    • Corrosion Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.157-164
    • /
    • 2012
  • In first experiment series, this paper is devoted for examining progress of reinforcement corrosion due to carbonation in concrete and to quantify uncarbonation depth to protect reinforcement from corroding. The tolerance of cover depth should be considered in order to prevent carbonation-induced corrosion. From the relationship between the weight loss of reinforcement and corrosion current density for a given time, therefore, the tolerance of cover depth to prevent carbonation-induced corrosion is computed. It is observed that corrosion occurs when the distance between carbonation front and reinforcement surface (uncarbonated depth) is smaller than 5 mm.As a secondary purpose of this study, it is investigated to examine the interaction between carbonation and chloride penetration and their effects on concrete. This was examined experimentally under various boundary conditions. For concrete under the double condition, the risk of deterioration due to carbonation was not severe. However, it was found that the carbonation of concrete could significantly accelerate chloride penetration. As a result, chloride penetration in combination with carbonation is a serious cause of deterioration of concrete.

A Fundamental Study on the Prediction of Carbonation Progress Using Deep Learning Algorithm Considering Mixing Factors (배합인자를 고려한 딥러닝 알고리즘 기반 탄산화 진행 예측에 관한 기초적 연구)

  • Jung, Do-Hyun;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.30-31
    • /
    • 2019
  • Carbonation of the root concrete reduces the durability of the reinforced concrete, and it is important to check the carbonation resistance of the concrete to ensure the durability of the reinforced concrete structure. In this study, a basic study on the prediction of carbonation progress was conducted by considering the mixing conditions of concrete using deep learning algorithm during the theory of artificial neural network theory. The data used in the experiment used values that converted the carbonation velocity coefficient obtained from the mixing conditions of concrete and the accelerated carbonation experiment into the actual environment. The analysis shows that the error rate of the deep learning model according to the Hidden Layer is the best for the model using five layers, and based on the five Hidden layers, we want to verify the predicted performance of the carbonation speed coefficient of the carbonation test specimen in which the exposure experiment took place in the real environment.

  • PDF

Microstructure modeling of carbonation of metakaolin blended concrete

  • Wang, Xiao-Yong;Lee, Han-Seung
    • Advances in concrete construction
    • /
    • v.7 no.3
    • /
    • pp.167-174
    • /
    • 2019
  • Metakaolin (MK), which is increasingly being used to produce high performance concrete, is produced by calcining purified kaolinite between 650 and $700^{\circ}C$ in a rotary kiln. The carbonation resistance of metakaolin blended concrete is lower than that of control concrete. Hence, it is critical to consider carbonation durability for rationally using metakaolin in the concrete industry. This study presents microstructure modeling during the carbonation of metakaolin blended concrete. First, based on a blended hydration mo del, the amount of carbonatable substances and porosity are determined. Second, based on the chemical reactions between carbon dioxide and carbonatable substances, the reduction of concrete porosity due to carbonation is calculated. Furthermore, $CO_2$ diffusivity is evaluated considering the concrete composition and exposed environment. The carbonation depth of concrete is analyzed using a diffusion-based model. The proposed microstructure model takes into account the influences of concrete composition, concrete curing, and exposure condition on carbonation. The proposed model is useful as a predetermination tool for the evaluation of the carbonation service life of metakaolin blended concrete.

An Experimental Study on the Carbonation Properties of Concrete According to Accelerating Carbonation Conditions (촉진중성화 조건에 따른 콘크리트의 중성화 특성에 관한 실험적 연구)

  • 문형재;이의배;송민섭;주지현;조봉석;김무한
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2004.05a
    • /
    • pp.41-44
    • /
    • 2004
  • Recently, in the case of domestic, for all that the deterioration environment about the carbonation of reinforced concrete structures is accelerated, systematic diagnosis and researches are not completed. And the selection techniques of repair material and method used under the situation that the indicator and the performance evaluation method are nor established are dependant on existing experience. Therefore, the purpose of this study is intend to present fundamental data for the reasonable selection of repair material and method. durability design and longevity on the deteriorated reinforced concrete structures, through computing the carbonation depth and velocity coefficient by accelerating carbonation test under various accelerating conditions and investigating the application of carbonation evaluation method. The results of this study are as follow; The resistances to carbonation are increased when the W/C ratio if lower and the treatment of surface coating is executed. And the carbonation depth and velocity coefficient according to accelerating carbonation test conditions are increased when the conditions of temperature, relative humidity and $CO_2$density are higher individually.

  • PDF

Measurement of carbonation depth of concrete in old buildings and experimental evaluation of carbonation degree and CO2 absorption using differential thermal gravimetric analysis (노후 건축물의 콘크리트 탄산화 깊이 측정과 시차열 중량분석을 통한 탄산화도 및 CO2 흡수량 실험적 평가)

  • Lee, Sang-Hyun;Ki, Jun-Do;Cho, Hong-Bum;Park, Chang-Gun;Kim, Young-Sun;Moon, Hyung-Jae
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.197-198
    • /
    • 2022
  • Based on the carbonation depth measurement by the indicator for concrete collected from old structures and the quantitative analysis of Ca(OH)2 and CO2 in the carbonation section before and after the carbonation depth and in the non-carbonation section, the absorbable CO2 amount and carbonation degree measurement result is as follows 1) The carbonation depth of the 40-year-old reinforced concrete structure was measured to be about 22 mm. (basement interior wall, marble finish, strength 30MPa) 2) The amount of CO2 absorbed by the concrete was about 4.3% of the sample weight, and the carbonation degree was estimated to be about 53%.

  • PDF