DOI QR코드

DOI QR Code

Surface Treatment Method for Long-term Stability of CdSe/ZnS Quantum Dots

장시간 안정성을 위한 CdSe/ZnS 양자점의 표면처리 기술

  • Park, Hyun-Su (Department of Energy Engineering, Dankook University) ;
  • Jeong, Da-Woon (Korea Institute for Rare Metals, Korea Institute of Industrial Technology) ;
  • Kim, Bum-Sung (Korea Institute for Rare Metals, Korea Institute of Industrial Technology) ;
  • Joo, So-Yeong (Advanced Materials & Processing Center, Institute for Advanced Engineering (IAE)) ;
  • Lee, Chan-Gi (Advanced Materials & Processing Center, Institute for Advanced Engineering (IAE)) ;
  • Kim, Woo-Byoung (Department of Energy Engineering, Dankook University)
  • 박현수 (단국대학교 에너지공학과) ;
  • 정다운 (한국생산기술연구원 한국희소금속산업기술센터) ;
  • 김범성 (한국생산기술연구원 한국희소금속산업기술센터) ;
  • 주소영 (고등기술연구원 신소재공정센터) ;
  • 이찬기 (고등기술연구원 신소재공정센터) ;
  • 김우병 (단국대학교 에너지공학과)
  • Received : 2017.01.26
  • Accepted : 2017.02.16
  • Published : 2017.02.28

Abstract

We have investigated the washing method of as-synthesized CdSe/ZnS core/shell structure quantum dots (QDs) and the effective surface passivation method of the washed QDs using PMMA. The quantum yield (QY%) of as-synthesized QDs decreases with time, from 79.3% to 21.1%, owing to surface reaction with residual organics. The decreased QY% is restored to the QY% of as-synthesized QDs by washing. However, the QY% of washed QDs also decreases with time, owing to the absence of surface passivation layer. On the other hand, the PMMA-treated QDs maintained a relatively higher QY% after washing than that of the washed QDs that were kept in toluene solution for 30 days. Formation of the PMMA coating layer on CdSe/ZnS QD surface is confirmed by HR-TEM and FT-IR. It is found that the PMMA surface coating, when combined with washing, is useful to be applied in the storage of QDs, owing to its long-term stability.

Keywords

References

  1. K. Sun, M. Vasudev, H. Jung, J. Yang, A. Kar, Y. Li, K. Reinhardt, P. Snee, M. A. Stroscio and M. Dutta: Microelectron. J., 40 (2009) 644. https://doi.org/10.1016/j.mejo.2008.06.033
  2. S. Cordero, P. Carson, R. Estabrook, G. Strouse and S. Buratto: J. Phys. Chem. B, 104 (2000) 12137. https://doi.org/10.1021/jp001771s
  3. V. Colvin, M. Schlamp and A. P. Alivisatos: Nature, 370 (1994) 354. https://doi.org/10.1038/370354a0
  4. C. Murray, D. J. Norris and M. G. Bawendi: J. Am. Chem. Soc., 115 (1993) 8706. https://doi.org/10.1021/ja00072a025
  5. I. L. Medintz, H. T. Uyeda, E. R. Goldman and H. Mattoussi: Nat. Mater., 4 (2005) 435. https://doi.org/10.1038/nmat1390
  6. W. C. Chan, D. J. Maxwell, X. Gao, R. E. Bailey, M. Han and S. Nie: Curr. Opin. Biotechnol., 13 (2002) 40. https://doi.org/10.1016/S0958-1669(02)00282-3
  7. Q. Sun, Y. A. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang and Y. Li: Nat. Photon., 1 (2007) 717. https://doi.org/10.1038/nphoton.2007.226
  8. V. Aroutiounian, S. Petrosyan, A. Khachatryan and K. Touryan: J. Appl. Phys., 89 (2001) 2268. https://doi.org/10.1063/1.1339210
  9. D. S. English, L. E. Pell, Z. Yu, P. F. Barbara and B. A. Korgel: Nano Lett., 2 (2002) 681. https://doi.org/10.1021/nl025538c
  10. M. A. Hines and P. Guyot-Sionnest: J. Phys. Chem., 100 (1996) 468. https://doi.org/10.1021/jp9530562
  11. A. Kortan, R. Hull, R. L. Opila, M. G. Bawendi, M. L. Steigerwald, P. Carroll and L. E. Brus: J. Am. Chem. Soc., 112 (1990) 1327. https://doi.org/10.1021/ja00160a005
  12. M. Danek, K. F. Jensen, C. B. Murray and M. G. Bawendi: Chem. Mater., 8 (1996) 173. https://doi.org/10.1021/cm9503137
  13. P. Reiss, M. Protiere and L. Li: small, 5 (2009) 154. https://doi.org/10.1002/smll.200800841
  14. X. Peng, M. C. Schlamp, A. V. Kadavanich and A. P. Alivisatos: J. Am. Chem. Soc., 119 (1997) 7019. https://doi.org/10.1021/ja970754m
  15. V. V. Breus, C. D. Heyes and G. U. Nienhaus: : J. Phys. Chem. C, 111 (2007) 18589. https://doi.org/10.1021/jp075848p
  16. B. Pong, B. L. Trout and J. Lee: Langmuir, 24 (2008) 5270. https://doi.org/10.1021/la703431j
  17. X. Hu, X. Zhang and W. Jin: Electrochim. Acta, 94 (2013) 367. https://doi.org/10.1016/j.electacta.2012.10.117
  18. W. R. Algar and U. J. Krull: ChemPhysChem, 8 (2007) 561. https://doi.org/10.1002/cphc.200600686
  19. D. Liu, F. Wu, C. Zhou, H. Shen, H. Yuan, Z. Du, L. Ma and L. S. Li: Sensor. Actuator. B: Chem., 186 (2013) 235. https://doi.org/10.1016/j.snb.2013.05.094
  20. A. Giri, N. Goswami, P. Lemmens and S. K. Pal: Mater. Res. Bull., 47 (2012) 1912. https://doi.org/10.1016/j.materresbull.2012.04.025
  21. C. Carrillo-Carrion, B. M. Simonet and M. Valcarcel: Anal. Chim. Acta, 792 (2013) 93. https://doi.org/10.1016/j.aca.2013.07.004
  22. H. Yang and Y. J. Kim: J. Korean Powder Metall. Inst., 19 (2012) 177. https://doi.org/10.4150/KPMI.2012.19.3.177
  23. D. V. Talapin, A. L. Rogach, A. Kornowski, M. Haase and H. Weller: Nano lett., 1 (2001) 207. https://doi.org/10.1021/nl0155126
  24. Y. Kwon, Y. Choi, K. Kim, C. Lee, K. Lee, B. Kim and Y. Choa: Surf. Coating Tech., 259 (2014) 83. https://doi.org/10.1016/j.surfcoat.2014.05.061
  25. S. H. Anh, G. C. Choi, Y. K. Beak, Y. K. Kim and Y. D. Kim: J. Korean Powder Metall. Inst., 19 (2012) 362. https://doi.org/10.4150/KPMI.2012.19.5.362
  26. N. Al-Hosiny, S. Abdallah, M. Moussa and A. Badawi: J. Polym. Res., 20 (2013) 76. https://doi.org/10.1007/s10965-013-0076-x
  27. I. Suarez, H. Gordillo, R. Abargues, S. Albert and J. Martinez-Pastor: Nanotechnology, 22 (2011) 435202. https://doi.org/10.1088/0957-4484/22/43/435202
  28. L. Hu, H. Wu, L. Du, H. Ge, X. Chen and N. Dai: Nanotechnology, 22 (2011) 125202. https://doi.org/10.1088/0957-4484/22/12/125202
  29. Y. Kwon, N. S. A. Eom, Y. Choi, B. Kim, T. Kim, C. Lee, K. Lee and Y. Choa: J. Nanosci. Nanotechnol., 14 (2014) 7636. https://doi.org/10.1166/jnn.2014.9385
  30. J. M. Haremza, M. A. Hahn, T. D. Krauss, S. Chen and J. Calcines: Nano Lett., 2 (2002) 1253. https://doi.org/10.1021/nl025799m
  31. R. M. Santana, T. D. Oliveira, S. S. M. Rodrigues, C. Frigerio, J. L. Santos and M. Korn: Talanta, 135 (2015) 27. https://doi.org/10.1016/j.talanta.2014.12.021
  32. J. Lakowicz: Topics in Fluorescence Spectroscopy. Kluwer Academic/plenum Publishers, New York (1999).
  33. H. S. Hong, K. S. Park, C. G. Lee, B. S. Kim, L. S. Kang and Y. H. Jin: J. Korean Powder Metall. Inst., 19 (2012) 451. https://doi.org/10.4150/KPMI.2012.19.6.451
  34. A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian and E. H. Sargent: Nat. Nano., 7 (2012) 577. https://doi.org/10.1038/nnano.2012.127

Cited by

  1. Study on Surface-defect Passivation of InP System Quantum Dots by Photochemical Method vol.24, pp.6, 2017, https://doi.org/10.4150/KPMI.2017.24.6.489