DOI QR코드

DOI QR Code

Synthesis and Properties of InP/ZnS core/shell Nanoparticles with One-pot process

One-pot 공정을 이용한 InP/ZnS core/shell 나노결정 합성 및 특성 연구

  • Joo, So Yeong (Advanced Materials & Processing Center, Institute for Advanced Engineering (IAE)) ;
  • Hong, Myung Hwan (Advanced Materials & Processing Center, Institute for Advanced Engineering (IAE)) ;
  • Kang, Leeseung (Advanced Materials & Processing Center, Institute for Advanced Engineering (IAE)) ;
  • Kim, Tae Hyung (Advanced Materials & Processing Center, Institute for Advanced Engineering (IAE)) ;
  • Lee, Chan Gi (Advanced Materials & Processing Center, Institute for Advanced Engineering (IAE))
  • 주소영 (고등기술연구원 신소재공정센터) ;
  • 홍명환 (고등기술연구원 신소재공정센터) ;
  • 강이승 (고등기술연구원 신소재공정센터) ;
  • 김태형 (고등기술연구원 신소재공정센터) ;
  • 이찬기 (고등기술연구원 신소재공정센터)
  • Received : 2017.02.09
  • Accepted : 2017.02.22
  • Published : 2017.02.28

Abstract

In this study, simple chemical synthesis of green emitting Cd-free InP/ZnS QDs is accomplished by reacting In, P, Zn, and S precursors by one-pot process. The particle size and the optical properties were tailored, by controlling various experimental conditions, including [In]/[MA] (MA: myristic acid) mole ratio, reaction temperature and reaction time. The results of ultraviolet-visible spectroscopy (UV-vis), and of photoluminescence (PL), reveal that the exciton emission of InP was improved by surface coating, with a layer of ZnS. We report the correlation between each experimental condition and the luminescent properties of InP/ZnS core/shell QDs. Transmission electron microscopy (TEM), and X-ray powder diffraction (XRD) techniques were used to characterize the as-synthesized QDs. In contrast to core nanoparticles, InP/ZnS core/shell treated with surface coating shows a clear ultraviolet peak. Besides this work, we need to study what clearly determines the shell kinetic growth mechanism of InP/ZnS core shell QDs.

Keywords

References

  1. A. P. Alivisatos: J .Phys .Chem., 100 (1996) 13226. https://doi.org/10.1021/jp9535506
  2. D. Pugh-Thomas, B. M. Walsh and M. C. Gupta: Nanotechnology., 22 (2011) 185503. https://doi.org/10.1088/0957-4484/22/18/185503
  3. V. L. Colvin, M. C. Schlamp and A. P. Alivisatos: Nature, 370 (1994) 354. https://doi.org/10.1038/370354a0
  4. A. P. Alivisatos: Science., 271 (1996) 933. https://doi.org/10.1126/science.271.5251.933
  5. A. D. Yoffe: Adv .Phys., 42 (1993) 173. https://doi.org/10.1080/00018739300101484
  6. A. D. Yoffe: Adv. Phys., 50 (2001) 1.
  7. D. Bera, L. Qian, T. Tseng and P. H. Holloway: Materials., 3 (2010) 2260. https://doi.org/10.3390/ma3042260
  8. C. Murray, D. J. Norris and M. G. Bawendi: J. Am. Chem. Soc., 115 (1993) 8706. https://doi.org/10.1021/ja00072a025
  9. M. Green: SPIE Photonics Europe., 6 (2002) 355.
  10. T. Greco, C. Ippen and A. Wedel: SPIE Photonics Europe., (2012) 842439.
  11. D. Battaglia and X. Peng: Nano Lett., 2 (2002) 1027. https://doi.org/10.1021/nl025687v
  12. M. Brumer, A. Kigel, L. Amirav, A. Sashchiuk, O. Solomesch, N. Tessler and E. Lifshitz: Adv. Funct. Mater., 15 (2005) 1111. https://doi.org/10.1002/adfm.200400620
  13. M. Anc, N. Pickett, N. Gresty, J. Harris and K. Mishra: ECS J. Solid State Sci. Technol., 2 (2013) R3071.
  14. H. Li, Z. Wu and M. T. Lusk: J. Phys. Chem. C, 118 (2013) 46.
  15. W. K. Bae, K. Char, H. Hur and S. Lee: Chem. Mater., 20 (2008) 531. https://doi.org/10.1021/cm070754d
  16. M. A. Hines and P. Guyot-Sionnest: J. Phys. Chem., 100 (1996) 468. https://doi.org/10.1021/jp9530562
  17. J. Lim, W. K. Bae, D. Lee, M. K. Nam, J. Jung, C. Lee, K. Char and S. Lee: Chem. Mater., 23 (2011) 4459. https://doi.org/10.1021/cm201550w
  18. B. Zhang, Y. Wang, C. Yang, S. Hu, Y. Gao, Y. Zhang, Y. Wang, H. V. Demir, L. Liu and K. Yong: Phys. Chem. Chem. Phys., 17 (2015) 25133. https://doi.org/10.1039/C5CP03312H
  19. D. Mijatovic, J. Eijkel and A. Van Den Berg: Lab on a Chip, 5 (2005) 492. https://doi.org/10.1039/b416951d
  20. C. de Mello Donegá, P. Liljeroth and D. Vanmaekelbergh: Small, 1 (2005) 1152. https://doi.org/10.1002/smll.200500239
  21. S. G. Kwon, Y. Piao, J. Park, S. Angappane, Y. Jo, N. Hwang, J. Park and T. Hyeon: J. Am. Chem. Soc., 129 (2007) 12571. https://doi.org/10.1021/ja074633q
  22. J. Park, J. Joo, S. G. Kwon, Y. Jang and T. Hyeon: Angewandte Chemie International Edition, 46 (2007) 4630. https://doi.org/10.1002/anie.200603148
  23. S. Xu, S. Kumar and T. Nann: J. Am. Chem. Soc., 128 (2006) 1054. https://doi.org/10.1021/ja057676k
  24. L. Li and P. Reiss: J. Am. Chem. Soc., 130 (2008) 11588. https://doi.org/10.1021/ja803687e
  25. A. Narayanaswamy, L. Feiner and P. Van Der Zaag: J. Phys. Chem. C, 112 (2008) 6775. https://doi.org/10.1021/jp800339m
  26. E. Lee, J. Moon, Y. Kim, P. Shin and Y. Kim: J. Korean Powder Metall. Inst., 22 (2015) 385. https://doi.org/10.4150/KPMI.2015.22.6.385
  27. K. Lim, H. S. Jang and K. Woo: Nanotechnology., 23 (2012) 485609. https://doi.org/10.1088/0957-4484/23/48/485609
  28. S. Haubold, M. Haase, A. Kornowski and H. Weller: ChemPhysChem, 2 (2001) 331. https://doi.org/10.1002/1439-7641(20010518)2:5<331::AID-CPHC331>3.0.CO;2-0
  29. H. Huang, H. Li, A. Wang, S. Zhong, K. Fang and J. Feng: Analyst, 139 (2014) 6536. https://doi.org/10.1039/C4AN01757A
  30. C. A. Leatherdale, W. Woo, F. V. Mikulec and M. G. Bawendi: J. Phys. Chem. B, 106 (2002) 7619. https://doi.org/10.1021/jp025698c
  31. A. Mandal, A. Dandapat and G. De: Analyst, 137 (2012) 765. https://doi.org/10.1039/C1AN15653E
  32. D. Mourad: J. Appl. Phys., 121 (2017) 014307. https://doi.org/10.1063/1.4973482
  33. S. C. Pandey, J. Wang, T. Mountziaris and D. Maroudas: J. Appl. Phys., 111 (2012) 113526. https://doi.org/10.1063/1.4728176