DOI QR코드

DOI QR Code

A new approach to the stabilization and convergence acceleration in coupled Monte Carlo-CFD calculations: The Newton method via Monte Carlo perturbation theory

  • 투고 : 2017.05.30
  • 심사 : 2017.08.07
  • 발행 : 2017.09.25

초록

This paper proposes the adoption of Monte Carlo perturbation theory to approximate the Jacobian matrix of coupled neutronics/thermal-hydraulics problems. The projected Jacobian is obtained from the eigenvalue decomposition of the fission matrix, and it is adopted to solve the coupled problem via the Newton method. This avoids numerical differentiations commonly adopted in Jacobian-free Newton-Krylov methods that tend to become expensive and inaccurate in the presence of Monte Carlo statistical errors in the residual. The proposed approach is presented and preliminarily demonstrated for a simple two-dimensional pressurized water reactor case study.

키워드

참고문헌

  1. V.S. Mahadevan, J.C. Ragusa, V.A. Mousseau, A verification exercise in multiphysics simulations for coupled reactor physics calculations, Progr. Nucl. Energy 55 (2012) 12-32. https://doi.org/10.1016/j.pnucene.2011.10.013
  2. D.R. Gaston, C.J. Permann, J.W. Peterson, A.E. Slaughter, D. Andrs, Y. Wang, M.P. Short, D.M. Perez, M.R. Tonks, J. Ortensi, et al., Physics-based multiscale coupling for full core nuclear reactor simulation, Ann. Nucl. Energy 84 (2015) 45-54. https://doi.org/10.1016/j.anucene.2014.09.060
  3. D. Kotlyar, Y. Shaposhnik, E. Fridman, E. Shwageraus, Coupled neutronic thermo-hydraulic analysis of full PWR core with Monte-Carlo based BGCore system, Nucl. Eng. Des. 241 (9) (2011) 3777-3786. https://doi.org/10.1016/j.nucengdes.2011.07.028
  4. M. Vazquez, H. Tsige-Tamirat, L. Ammirabile, F. Martin-Fuertes, Coupled neutronics thermal-hydraulics analysis using Monte Carlo and sub-channel codes, Nucl. Eng. Des. 250 (2012) 403-411. https://doi.org/10.1016/j.nucengdes.2012.06.007
  5. N. Capellan, J. Wilson, S. David, O. Meplan, J. Brizi, A. Bidaud, A. Nuttin, P. Guillemin, 3D coupling of Monte Carlo neutronics and thermal-hydraulics calculations as a simulation tool for innovative reactor concepts, in: International Conference GLOBAL 2009 "The Nuclear Fuel Cycle: Sustainable Options & Industrial Perspectives", 2009, pp. 1358-1367.
  6. H. Jasak, A. Jemcov, Z. Tukovic, et al., Openfoam: a C++ library for complex physics simulations, in: International Workshop on Coupled Methods in Numerical Dynamics, vol. 1000, IUC Dubrovnik, Croatia, 2007, pp. 1-20.
  7. J. Leppanen, M. Pusa, T. Viitanen, V. Valtavirta, T. Kaltiaisenaho, The Serpent Monte Carlo code: status, development and applications in 2013, Ann. Nucl. Energy 82 (2015) 142-150.
  8. K. Ivanov, M. Avramova, S. Kamerow, I. Kodeli, E. Sartori, E. Ivanov, O. Cabellos, Benchmarks for Uncertainty Analysis in Modelling (UAM) for the Design, Operation and Safety Analysis of LWRS. Volume I: Specification and Support Data for Neutronics Cases (Phase I), Technical Report, Organisation for Economic Co-Operation and Development, 2013.
  9. J. Pounders, Stability and near-optimal underrelaxation of coupled reactor physics calculations, in: PHYSOR 2016, Sun Valley, ID, May 1-5, 2016.
  10. J. Dufek, W. Gudowski, Stochastic approximation for Monte Carlo calculation of steady-state conditions in thermal reactors, Nucl. Sci. Eng. 152 (3) (2006) 274-283. https://doi.org/10.13182/NSE06-2
  11. D.A. Knoll, D.E. Keyes, Jacobian-free Newton-Krylov methods: a survey of approaches and applications, J. Comput. Phys. 193 (2) (2004) 357-397. https://doi.org/10.1016/j.jcp.2003.08.010
  12. J. Willert, X. Chen, C. Kelley, Newton's method for Monte Carlo-based residuals, SIAM J. Numer. Anal. 53 (4) (2015) 1738-1757. https://doi.org/10.1137/130905691
  13. M. Aufiero, Y. Qiu, M. Fratoni, The iterated fission matrix method, Trans. Am. Nucl. Soc. 115 (2016).
  14. R.B. Nelson, Simplified calculation of eigenvector derivatives, AIAA J 14 (9) (1976) 1201-1205. https://doi.org/10.2514/3.7211
  15. M. Aufiero, M. Martin, M. Fratoni, XGPT: extending Monte Carlo generalized perturbation theory capabilities to continuous-energy sensitivity functions, Ann. Nucl. Energy 96 (2016) 295-306. https://doi.org/10.1016/j.anucene.2016.06.012

피인용 문헌

  1. Versatility and stabilization improvements of full core neutronics/thermal-hydraulics coupling between RMC and CTF vol.332, pp.None, 2017, https://doi.org/10.1016/j.nucengdes.2018.03.028
  2. A Code-Agnostic Driver Application for Coupled Neutronics and Thermal-Hydraulic Simulations vol.195, pp.4, 2017, https://doi.org/10.1080/00295639.2020.1830620
  3. Analysis of the performances of the CFD schemes used for coupling computation vol.53, pp.7, 2017, https://doi.org/10.1016/j.net.2021.01.006
  4. A perturbation-based acceleration for Monte Carlo – Thermal Hydraulics Picard iterations. Part I: Theory and application to extruded BWR unit-cell. vol.167, pp.None, 2017, https://doi.org/10.1016/j.anucene.2021.108756