Browse > Article
http://dx.doi.org/10.1016/j.net.2017.08.005

A new approach to the stabilization and convergence acceleration in coupled Monte Carlo-CFD calculations: The Newton method via Monte Carlo perturbation theory  

Aufiero, Manuele (Department of Nuclear Engineering, University of California)
Fratoni, Massimiliano (Department of Nuclear Engineering, University of California)
Publication Information
Nuclear Engineering and Technology / v.49, no.6, 2017 , pp. 1181-1188 More about this Journal
Abstract
This paper proposes the adoption of Monte Carlo perturbation theory to approximate the Jacobian matrix of coupled neutronics/thermal-hydraulics problems. The projected Jacobian is obtained from the eigenvalue decomposition of the fission matrix, and it is adopted to solve the coupled problem via the Newton method. This avoids numerical differentiations commonly adopted in Jacobian-free Newton-Krylov methods that tend to become expensive and inaccurate in the presence of Monte Carlo statistical errors in the residual. The proposed approach is presented and preliminarily demonstrated for a simple two-dimensional pressurized water reactor case study.
Keywords
Jacobian; M&C2017; Monte Carlo; Multiphysics; Newton; Perturbation Theory;
Citations & Related Records
연도 인용수 순위
  • Reference
1 V.S. Mahadevan, J.C. Ragusa, V.A. Mousseau, A verification exercise in multiphysics simulations for coupled reactor physics calculations, Progr. Nucl. Energy 55 (2012) 12-32.   DOI
2 D.R. Gaston, C.J. Permann, J.W. Peterson, A.E. Slaughter, D. Andrs, Y. Wang, M.P. Short, D.M. Perez, M.R. Tonks, J. Ortensi, et al., Physics-based multiscale coupling for full core nuclear reactor simulation, Ann. Nucl. Energy 84 (2015) 45-54.   DOI
3 D. Kotlyar, Y. Shaposhnik, E. Fridman, E. Shwageraus, Coupled neutronic thermo-hydraulic analysis of full PWR core with Monte-Carlo based BGCore system, Nucl. Eng. Des. 241 (9) (2011) 3777-3786.   DOI
4 M. Vazquez, H. Tsige-Tamirat, L. Ammirabile, F. Martin-Fuertes, Coupled neutronics thermal-hydraulics analysis using Monte Carlo and sub-channel codes, Nucl. Eng. Des. 250 (2012) 403-411.   DOI
5 N. Capellan, J. Wilson, S. David, O. Meplan, J. Brizi, A. Bidaud, A. Nuttin, P. Guillemin, 3D coupling of Monte Carlo neutronics and thermal-hydraulics calculations as a simulation tool for innovative reactor concepts, in: International Conference GLOBAL 2009 "The Nuclear Fuel Cycle: Sustainable Options & Industrial Perspectives", 2009, pp. 1358-1367.
6 H. Jasak, A. Jemcov, Z. Tukovic, et al., Openfoam: a C++ library for complex physics simulations, in: International Workshop on Coupled Methods in Numerical Dynamics, vol. 1000, IUC Dubrovnik, Croatia, 2007, pp. 1-20.
7 J. Leppanen, M. Pusa, T. Viitanen, V. Valtavirta, T. Kaltiaisenaho, The Serpent Monte Carlo code: status, development and applications in 2013, Ann. Nucl. Energy 82 (2015) 142-150.
8 K. Ivanov, M. Avramova, S. Kamerow, I. Kodeli, E. Sartori, E. Ivanov, O. Cabellos, Benchmarks for Uncertainty Analysis in Modelling (UAM) for the Design, Operation and Safety Analysis of LWRS. Volume I: Specification and Support Data for Neutronics Cases (Phase I), Technical Report, Organisation for Economic Co-Operation and Development, 2013.
9 J. Pounders, Stability and near-optimal underrelaxation of coupled reactor physics calculations, in: PHYSOR 2016, Sun Valley, ID, May 1-5, 2016.
10 J. Dufek, W. Gudowski, Stochastic approximation for Monte Carlo calculation of steady-state conditions in thermal reactors, Nucl. Sci. Eng. 152 (3) (2006) 274-283.   DOI
11 D.A. Knoll, D.E. Keyes, Jacobian-free Newton-Krylov methods: a survey of approaches and applications, J. Comput. Phys. 193 (2) (2004) 357-397.   DOI
12 J. Willert, X. Chen, C. Kelley, Newton's method for Monte Carlo-based residuals, SIAM J. Numer. Anal. 53 (4) (2015) 1738-1757.   DOI
13 M. Aufiero, Y. Qiu, M. Fratoni, The iterated fission matrix method, Trans. Am. Nucl. Soc. 115 (2016).
14 R.B. Nelson, Simplified calculation of eigenvector derivatives, AIAA J 14 (9) (1976) 1201-1205.   DOI
15 M. Aufiero, M. Martin, M. Fratoni, XGPT: extending Monte Carlo generalized perturbation theory capabilities to continuous-energy sensitivity functions, Ann. Nucl. Energy 96 (2016) 295-306.   DOI