References
-
Alexander, N. S., Preininger, A. M., Kaya, A. I., Stein, R. A., Hamm, H. E. and Meiler, J. (2014) Energetic analysis of the rhodopsin-G-protein complex links the
${\alpha}5$ helix to GDP release. Nat. Struct. Mol. Biol. 21, 56-63. https://doi.org/10.1038/nsmb.2705 -
Coleman, D. E., Berghuis, A. M., Lee, E., Linder, M. E., Gilman, A. G. and Sprang, S. R. (1994) Structures of active conformations of Gi
${\alpha}$ 1 and the mechanism of GTP hydrolysis. Science 265, 1405-1412. https://doi.org/10.1126/science.8073283 - DeVree, B. T., Mahoney, J. P., Velez-Ruiz, G. A., Rasmussen, S. G. F., Kuszak, A. J., Edwald, E., Fung, J. J., Manglik, A., Masureel, M., Du, Y., Matt, R. A., Pardon, E., Steyaert, J., Kobilka, B. K. and Sunahara, R. K. (2016) Allosteric coupling from G protein to the agonist-binding pocket in GPCRs. Nature 535, 182-186. https://doi.org/10.1038/nature18324
- Downes, G. B. and Gautam, N. (1999) The G protein subunit gene families. Genomics 62, 544-552. https://doi.org/10.1006/geno.1999.5992
- Dror, R. O., Mildorf, T. J., Hilger, D., Manglik, A., Borhani, D. W., Arlow, D. H., Philippsen, A., Villanueva, N., Yang, Z., Lerch, M. T., Hubbell, W. L., Kobilka, B. K., Sunahara, R. K. and Shaw, D. E. (2015) Structural basis for nucleotide exchange in heterotrimeric G proteins. Science 348, 1361-1365. https://doi.org/10.1126/science.aaa5264
- Duc, N. M., Kim, H. R. and Chung, K. Y. (2015) Structural mechanism of G protein activation by G protein-coupled receptor. Eur. J. Pharmacol. 763, 214-222. https://doi.org/10.1016/j.ejphar.2015.05.016
-
Ellenbroek, B. A. (2013) Histamine
$H_3$ receptors, the complex interaction with dopamine and its implications for addiction. Br. J. Pharmacol. 170, 46-57. https://doi.org/10.1111/bph.12221 - Ferre, S., Casado, V., Devi, L. A., Filizola, M., Jockers, R., Lohse, M. J., Milligan, G., Pin, J. P. and Guitart, X. (2014) G protein-coupled receptor oligomerization revisited: functional and pharmacological perspectives. Pharmacol. Rev. 66, 413-434. https://doi.org/10.1124/pr.113.008052
-
Fletcher, J. E., Lindorfer, M. A., DeFilippo, J. M., Yasuda, H., Guilmard, M. and Garrison, J. C. (1998) The G protein
${\beta}5$ subunit interacts selectively with the Gq${\alpha}$ subunit. J. Biol. Chem. 273, 636-644. https://doi.org/10.1074/jbc.273.1.636 -
Flock, T., Ravarani, C. N., Sun, D., Venkatakrishnan, A. J., Kayikci, M., Tate, C. G., Veprintsev, D. B. and Babu, M. M. (2015) Universal allosteric mechanism for
$G{\alpha}$ activation by GPCRs. Nature 524, 173-179. https://doi.org/10.1038/nature14663 -
Goricanec, D., Stehle, R., Egloffd, P., Grigoriue, S., Pluckthund, A., Wagnere, G. and Hagn, F. (2016) Conformational dynamics of a G-protein
${\alpha}$ subunit is tightly regulated by nucleotide binding. Proc. Natl. Acad. Sci. U.S.A. 113, E3629-E3638. https://doi.org/10.1073/pnas.1604125113 - Hamm, H. E. (1998) The many faces of G protein signaling. J. Biol. Chem. 273, 669-672. https://doi.org/10.1074/jbc.273.2.669
-
Huang, W., Manglik, A., Venkatakrishnan, A. J., Laeremans, T., Feinberg, E. N., Sanborn, A. L., Kato, H. E., Livingston, K. E., Thorsen, T. S., Kling, R. C., Granier, S., Gmeiner, P., Husbands, S. M., Traynor, J. R., Weis, W. I., Steyaert, J., Dror, R. O. and Kobilka, B. K. (2015) Structural insights into
${\mu}$ -opioid receptor activation. Nature 524, 315-321. https://doi.org/10.1038/nature14886 -
Jonesa, J. C., Jones, A. M., Temple, B. R. and Dohlman, H. G. (2012) Differences in intradomain and interdomain motion confer distinct activation properties to structurally similar
$G{\alpha}$ proteins. Proc. Natl. Acad. Sci. U.S.A. 109, 7275-7279. https://doi.org/10.1073/pnas.1202943109 - Kang, Y., Zhou, X. E., Gao, X., He, Y., Liu, W., Ishchenko, A., Barty, A., White, T. A., Yefanov, O., Han, G. W., Xu, Q., Waal, P. W., Ke, J., Tan, M. H., Zhang, C., Moeller, A., West, G. M., Pascal, B. D., Van Eps, N., Caro, L. N., Vishnivetskiy, S. A., Lee, R. J., Suino-Powell, K. M., Gu, X., Pal, K., Ma, J., Zhi, X., Boutet, S., Williams, G. J., Messerschmidt, M., Gati, C., Zatsepin, N. A., Wang, D., James, D., Basu, S., Roy-Chowdhury, S., Conrad, C. E., Coe, J., Liu, H., Lisova, S., Kupitz, C., Grotjohann, I., Fromme, R., Jiang, Y., Tan, M., Yang, H., Li, J., Wang, M., Zheng, Z., Li, D., Howe, N., Zhao, Y., Standfuss, J., Diederichs, K., Dong, Y., Potter, C. S., Carragher, B., Caffrey, M., Jiang, H., Chapman, H. N., Spence, J. C. H., Fromme, P., Weierstall, U., Ernst, O. P., Katritch, V., Gurevich, V. V., Griffin, P. R., Hubbell, W. L., Stevens, R. C., Cherezov, V., Melcher, K. and Xu, H. E. (2015) Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature 523, 561-567. https://doi.org/10.1038/nature14656
-
Kaya, A. I., Lokits, A. D., Gilbert, J. A., Iverson, T. M., Meiler, J. and Hamm, H. E. (2014) A conserved phenylalanine as a relay between the
${\alpha}5$ helix and the GDP binding region of heterotrimeric Gi protein${\alpha}$ subunit. J. Biol. Chem. 289, 24475-24487. https://doi.org/10.1074/jbc.M114.572875 - Kolan, D., Fonar, G. and Samson, A. O. (2014) Elastic network normal mode dynamics reveal the GPCR activation mechanism. Proteins 82, 579-586. https://doi.org/10.1002/prot.24426
- Kruse, A. C., Ring, A. M., Manglik, A., Hu, J., Hu, K., Eitel, K., Hubner, H., Pardon, E., Valant, C., Sexton, P. M., Christopoulos, A., Felder, C. C., Gmeiner, P., Steyaert, J., Weis, W. I., Garcia, K. C., Wess, J. and Kobilka, B. K. (2013) Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature 504, 101-106. https://doi.org/10.1038/nature12735
-
Lambright, D. G., Noel, J. P., Hamm, H. E. and Sigler, P. B. (1994) Structural determinants for activation of the
${\alpha}$ -subunit of a heterotrimeric G protein. Nature 369, 621-628. https://doi.org/10.1038/369621a0 - Lambright, D. G., Sondek, J., Bohm, A., Skiba, N. P., Hamm, H. E. and Sigler, P. B. (1996) The 2.0 A crystal structure of a heterotrimeric G protein. Nature 379, 311-319. https://doi.org/10.1038/379311a0
- Louet, M., Karakas, E., Perret, A., Perahia, D., Martinez, J. and Floquet, N. (2013) Conformational restriction of G-proteins Coupled Receptors (GPCRs) upon complexation to G-proteins: a putative activation mode of GPCRs. FEBS Lett. 587, 2656-2661. https://doi.org/10.1016/j.febslet.2013.06.052
-
Lutz, S., Shankaranarayanan, A., Coco, C., Ridilla, M., Nance, M. R., Vettel, C., Baltus, D., Evelyn, C. R., Neubig, R. R., Wieland, T. and Tesmer, J. J. (2007) Structure of
$G{\alpha}q$ -p63RhoGEF-RhoA complex reveals a pathway for the activation of RhoA by GPCRs. Science 318, 1923-1927. https://doi.org/10.1126/science.1147554 -
Manglik, A., Kim, T. H., Masureel, M., Altenbach, C., Yang, Z., Hilger, D., Lerch, M. T., Kobilka, T. S., Thian, F. S., Hubbell, W. L., Prosser, R. S. and Kobilka, B. K. (2015) Structural insights into the dynamic process of
${\beta}2$ -adrenergic receptor signaling. Cell 161, 1101-1111. https://doi.org/10.1016/j.cell.2015.04.043 -
Markby, D. W., Onrust, R. and Bourne, H. B. (1993) Separate GTP binding and GTPase activating domains of a G
${\alpha}$ subunit. Science 262, 1895-1901. https://doi.org/10.1126/science.8266082 - Mary, S., Damian, M., Louet, M., Floquet, N., Fehrentz, J. A., Marie, J., Martinez, J. and Baneres, J. L. (2012) Ligands and signaling proteins govern the conformational landscape explored by a G protein-coupled receptor. Proc. Natl. Acad. Sci. U.S.A. 109, 8304-8309. https://doi.org/10.1073/pnas.1119881109
-
Mixon, M. B., Lee, E., Coleman, D. E., Berghuis, A. M., Gilman, A. G. and Sprang, S. R. (1995) Tertiary and quaternary structural changes in Gi
${\alpha}$ 1 induced by GTP hydrolysis. Science 270, 954-960. https://doi.org/10.1126/science.270.5238.954 - Mnpotra, J. S., Qiao, Z., Cai, J., Lynch, D. L., Grossfield, A., Leioatts, N., Hurst, D. P., Pitman, M. C., Song, Z. H. and Reggio, P. H. (2014) Structural basis of G protein-coupled receptor-Gi protein interaction: formation of the cannabinoid CB2 receptor-Gi protein complex. J. Biol. Chem. 289, 20259-20272. https://doi.org/10.1074/jbc.M113.539916
- Moreira, I. S. (2014) Structural features of the G-protein/GPCR interactions. Biochim. Biophys. Acta 1840, 16-33. https://doi.org/10.1016/j.bbagen.2013.08.027
- Moreno, E., Hoffmann, H., Gonzalez-Sepulveda, M., Navarro, G., Casado, V., Cortes, A., Mallol, J., Vignes, M., McCormick, P. J., Canela, E. I., Lluis, C., Moratalla, R., Ferre, S., Ortiz, J. and Franco, R. (2011) Dopamine D1-histamine H3 receptor heteromers provide a selective link to MAPK signaling in GABAergic neurons of the direct striatal pathway. J. Biol. Chem. 286, 5846-5854. https://doi.org/10.1074/jbc.M110.161489
- Navarro, G., Cordomi, A., Zelman-Femiak, M., Brugarolas, M., Moreno, E., Aguinaga, D., Perez-Benito, L., Cortes, A., Casado, V., Mallol, J., Canela, E. I., Lluis, C., Pardo, L., Garcia-Saez, A. J., McCormick, P. J. and Franco, R. (2016) Quaternary structure of a G-protein-coupled receptor heterotetramer in complex with Gi and Gs. BMC Biol. 14, 26. https://doi.org/10.1186/s12915-016-0247-4
- Neer, E. J. (1995) Heterotrimeric G proteins: organizers of transmembrane signals. Cell 80, 249-257. https://doi.org/10.1016/0092-8674(95)90407-7
- Neves, S. R., Ram, P. T. and Iyengar, R. (2002) G Protein Pathways. Sciences 296, 1636-1639. https://doi.org/10.1126/science.1071550
- Nishimura, A., Kitano, K., Takasakic, J., Taniguchic, M., Mizunoa, N., Tagoa, K., Hakoshim, T. and Itoh, H. (2010) Structural basis for the specific inhibition of heterotrimeric Gq protein by a small molecule. Proc. Natl. Acad. Sci. U.S.A. 107, 13666-13671. https://doi.org/10.1073/pnas.1003553107
-
Noel, J. P., Hamm, H. E. and Sigler, P. B. (1993) The 2.2 A crystal structure of transducin-
${\alpha}$ complexed with$GTP{\gamma}S$ . Nature 366, 654-663. https://doi.org/10.1038/366654a0 -
Nygaard, R., Zou, Y., Dror, R. O., Mildorf, T. J., Arlow, D. H., Manglik, A., Pan, A. C., Liu, C. W., Fung, J. J., Bokoch, M. P., Thian, F. S., Kobilka, T. S., Shaw, D. E., Mueller, L., Prosser, R. S. and Kobilka, B. K. (2013) The dynamic process of
${\beta}2$ -adrenergic receptor activation. Cell 152, 532-542. https://doi.org/10.1016/j.cell.2013.01.008 -
Pachov, D. V., Fonseca, R., Arnol, D., Bernauer, J. and van den Bedem, H. (2016) Coupled Motions in
${\beta}_2AR$ :$G{\alpha}s$ Conformational Ensembles. J. Chem. Theory Comput. 12, 946-956. https://doi.org/10.1021/acs.jctc.5b00995 - Park, J. Y., Lee, S. Y., Kim, H. R., Seo, M. D. and Chung, K. Y. (2016) Structural mechanism of GPCR-arrestin interaction: recent breakthroughs. Arch. Pharm. Res. 39, 293-301. https://doi.org/10.1007/s12272-016-0712-1
- Preininger, A. M., Meiler, J. and Hamm, H. E. (2013) Conformational flexibility and structural dynamics in GPCR-mediated G protein activation: a perspective. J. Mol. Biol. 425, 2288-2298. https://doi.org/10.1016/j.jmb.2013.04.011
-
Rasmussen, S. G., Choi, H. J., Fung, J. J., Pardon, E., Casarosa, P., Chae, P. S., DeVree, B. T., Rosenbaum, D. M., Thian, F. S., Kobilka, T. S., Schnapp, A., Konetzki, I., Sunahara, R. K., Gellman, S. H., Pautsch, A., Steyaert, J., Weis, W. I. and Kobilka, B. K. (2011a) Structure of a nanobody-stabilized active state of the
${\beta}2$ adrenoceptor. Nature 469, 175-180. https://doi.org/10.1038/nature09648 -
Rasmussen, S. G., DeVree, B. T., Zou, Y., Kruse, A. C., Chung, K. Y., Kobilka, T. S., Thian, F. S., Chae, P. S., Pardon, E., Calinski, D., Mathiesen, J. M., Shah, S. T., Lyons, J. A., Caffrey, M., Gellman, S. H., Steyaert, J., Skiniotis, G., Weis, W. I., Sunahara, R. K. and Kobilka, B. K. (2011b) Crystal structure of the
${\beta}2$ adrenergic receptor-Gs protein complex. Nature 477, 549-555. https://doi.org/10.1038/nature10361 -
Richardson, M. and Robishaw, J. D. (1999) The
${\alpha}_{2A}$ -adrenergic receptor discriminates between Gi heterotrimers of different${\beta}{\gamma}$ subunit composition in Sf9 insect cell membranes. J. Biol. Chem. 274, 13525-13533. https://doi.org/10.1074/jbc.274.19.13525 - Ross, E. M. and Gilman, A. G. (1980) Biochemical properties of hormone-sensitive adenylate cyclase. Annu. Rev. Biochem. 49, 533-564. https://doi.org/10.1146/annurev.bi.49.070180.002533
-
Shim, J. Y., Ahn, K. H. and Kendall, D. A. (2013) Molecular basis of cannabinoid CB1 receptor coupling to the G protein heterotrimer
$G{\alpha}i{\beta}{\gamma}$ : identification of key CB1 contacts with the C-terminal helix${\alpha}5$ of$G{\alpha}i$ . J. Biol. Chem. 288, 32449-32465. https://doi.org/10.1074/jbc.M113.489153 - Siehler, S. (2009) Regulation of RhoGEF proteins by G12/13-coupled receptors. Br. J. Pharmacol. 158, 41-49. https://doi.org/10.1111/j.1476-5381.2009.00121.x
- Simon, M. I., Strathmann, M. P. and Gautam, N. (1991) Diversity of G proteins in signal transduction. Science 252, 802-808. https://doi.org/10.1126/science.1902986
-
Sondek, J., Lambright, D. G., Noel, J. P., Hamm, H. E. and Sigler, P. B. (1994) GTPase mechanism of Gproteins from the 1.7-A crystal structure of transducin
${\alpha}$ -GDP-AIF-4. Nature 372, 276-279. https://doi.org/10.1038/372276a0 - Staus, D. P., Strachan, R. T., Manglik, A., Pani, B., Kahsai, A. W., Kim, T. H., Wingler, L. M., Ahn, S., Chatterjee, A., Masoudi, A., Kruse, A. C., Pardon, E., Steyaert, J., Weis, W. I., Prosser, R. S., Kobilka, B. K., Costa, T. and Lefkowitz, R. J. (2016) Allosteric nanobodies reveal the dynamic range and diverse mechanisms of G-protein-coupled receptor activation. Nature 535, 448-452. https://doi.org/10.1038/nature18636
-
Sun, D., Flock, T., Deupi, X., Maeda, S., Matkovic, M., Mendieta, S., Mayer, D., Dawson, R. J., Schertler, G. F., Babu, M. M. and Veprintsev, D. B. (2015) Probing
$G{\alpha}i1$ protein activation at single-amino acid resolution. Nat. Struct. Mol. Biol. 22, 686-694. https://doi.org/10.1038/nsmb.3070 - Szczepek, M., Beyriere, F., Hofmann, K. P., Elgeti, M., Kazmin, R., Rose, A., Bartl, F. J., von Stetten, D., Heck, M., Sommer, M. E., Hildebrand, P. W. and Scheerer, P. (2014) Crystal structure of a common GPCR-binding interface for G protein and arrestin. Nat. Commun. 5, 4801. https://doi.org/10.1038/ncomms5801
-
Wall, M. A., Coleman, D. E., Lee, E., Iniguez-Lluhi, J. A., Posner, B. A., Gilman, A. G. and Sprang, S. R. (1995) The structure of the G protein heterotrimer Gi
${\alpha}$ 1${\beta}$ 1 gamma 2. Cell 83, 1047-1058. https://doi.org/10.1016/0092-8674(95)90220-1 -
Yao, X. Q. and Grant, B. J. (2013) Domain-opening and dynamic coupling in the
${\alpha}$ -subunit of heterotrimeric G proteins. Biophys. J. 105, L08-L10. https://doi.org/10.1016/j.bpj.2013.06.006 -
Yao, X. Q., Malik, R. U., Griggs, N. W., Skjaerven, L., Traynor, J. R., Sivaramakrishnan, S. and Grant, B. J. (2016) Dynamic Coupling and Allosteric Networks in the
${\alpha}$ Subunit of Heterotrimeric G Proteins. J. Biol. Chem. 291, 4742-4753. https://doi.org/10.1074/jbc.M115.702605
Cited by
- Conceptual Progress for the Improvements in the Selectivity and Efficacy of G Protein-Coupled Receptor Therapeutics: An Overview vol.25, pp.1, 2017, https://doi.org/10.4062/biomolther.2016.262
- Long‐distance communication in Arabidopsis involving a self‐activating G protein vol.2, pp.2, 2017, https://doi.org/10.1002/pld3.37
- Small Molecule Inhibitors Targeting Gα i 2 Protein Attenuate Migration of Cancer Cells vol.12, pp.6, 2017, https://doi.org/10.3390/cancers12061631
- The Signaling Pathways Involved in the Anticonvulsive Effects of the Adenosine A 1 Receptor vol.22, pp.1, 2021, https://doi.org/10.3390/ijms22010320