DOI QR코드

DOI QR Code

Recent Progress in Understanding the Conformational Mechanism of Heterotrimeric G Protein Activation

  • Received : 2016.08.02
  • Accepted : 2016.09.01
  • Published : 2017.01.01

Abstract

Heterotrimeric G proteins are key intracellular coordinators that receive signals from cells through activation of cognate G protein-coupled receptors (GPCRs). The details of their atomic interactions and structural mechanisms have been described by many biochemical and biophysical studies. Specifically, a framework for understanding conformational changes in the receptor upon ligand binding and associated G protein activation was provided by description of the crystal structure of the ${\beta}2$-adrenoceptor-Gs complex in 2011. This review focused on recent findings in the conformational dynamics of G proteins and GPCRs during activation processes.

Keywords

References

  1. Alexander, N. S., Preininger, A. M., Kaya, A. I., Stein, R. A., Hamm, H. E. and Meiler, J. (2014) Energetic analysis of the rhodopsin-G-protein complex links the ${\alpha}5$ helix to GDP release. Nat. Struct. Mol. Biol. 21, 56-63. https://doi.org/10.1038/nsmb.2705
  2. Coleman, D. E., Berghuis, A. M., Lee, E., Linder, M. E., Gilman, A. G. and Sprang, S. R. (1994) Structures of active conformations of Gi ${\alpha}$ 1 and the mechanism of GTP hydrolysis. Science 265, 1405-1412. https://doi.org/10.1126/science.8073283
  3. DeVree, B. T., Mahoney, J. P., Velez-Ruiz, G. A., Rasmussen, S. G. F., Kuszak, A. J., Edwald, E., Fung, J. J., Manglik, A., Masureel, M., Du, Y., Matt, R. A., Pardon, E., Steyaert, J., Kobilka, B. K. and Sunahara, R. K. (2016) Allosteric coupling from G protein to the agonist-binding pocket in GPCRs. Nature 535, 182-186. https://doi.org/10.1038/nature18324
  4. Downes, G. B. and Gautam, N. (1999) The G protein subunit gene families. Genomics 62, 544-552. https://doi.org/10.1006/geno.1999.5992
  5. Dror, R. O., Mildorf, T. J., Hilger, D., Manglik, A., Borhani, D. W., Arlow, D. H., Philippsen, A., Villanueva, N., Yang, Z., Lerch, M. T., Hubbell, W. L., Kobilka, B. K., Sunahara, R. K. and Shaw, D. E. (2015) Structural basis for nucleotide exchange in heterotrimeric G proteins. Science 348, 1361-1365. https://doi.org/10.1126/science.aaa5264
  6. Duc, N. M., Kim, H. R. and Chung, K. Y. (2015) Structural mechanism of G protein activation by G protein-coupled receptor. Eur. J. Pharmacol. 763, 214-222. https://doi.org/10.1016/j.ejphar.2015.05.016
  7. Ellenbroek, B. A. (2013) Histamine $H_3$ receptors, the complex interaction with dopamine and its implications for addiction. Br. J. Pharmacol. 170, 46-57. https://doi.org/10.1111/bph.12221
  8. Ferre, S., Casado, V., Devi, L. A., Filizola, M., Jockers, R., Lohse, M. J., Milligan, G., Pin, J. P. and Guitart, X. (2014) G protein-coupled receptor oligomerization revisited: functional and pharmacological perspectives. Pharmacol. Rev. 66, 413-434. https://doi.org/10.1124/pr.113.008052
  9. Fletcher, J. E., Lindorfer, M. A., DeFilippo, J. M., Yasuda, H., Guilmard, M. and Garrison, J. C. (1998) The G protein ${\beta}5$ subunit interacts selectively with the Gq ${\alpha}$ subunit. J. Biol. Chem. 273, 636-644. https://doi.org/10.1074/jbc.273.1.636
  10. Flock, T., Ravarani, C. N., Sun, D., Venkatakrishnan, A. J., Kayikci, M., Tate, C. G., Veprintsev, D. B. and Babu, M. M. (2015) Universal allosteric mechanism for $G{\alpha}$ activation by GPCRs. Nature 524, 173-179. https://doi.org/10.1038/nature14663
  11. Goricanec, D., Stehle, R., Egloffd, P., Grigoriue, S., Pluckthund, A., Wagnere, G. and Hagn, F. (2016) Conformational dynamics of a G-protein ${\alpha}$ subunit is tightly regulated by nucleotide binding. Proc. Natl. Acad. Sci. U.S.A. 113, E3629-E3638. https://doi.org/10.1073/pnas.1604125113
  12. Hamm, H. E. (1998) The many faces of G protein signaling. J. Biol. Chem. 273, 669-672. https://doi.org/10.1074/jbc.273.2.669
  13. Huang, W., Manglik, A., Venkatakrishnan, A. J., Laeremans, T., Feinberg, E. N., Sanborn, A. L., Kato, H. E., Livingston, K. E., Thorsen, T. S., Kling, R. C., Granier, S., Gmeiner, P., Husbands, S. M., Traynor, J. R., Weis, W. I., Steyaert, J., Dror, R. O. and Kobilka, B. K. (2015) Structural insights into ${\mu}$-opioid receptor activation. Nature 524, 315-321. https://doi.org/10.1038/nature14886
  14. Jonesa, J. C., Jones, A. M., Temple, B. R. and Dohlman, H. G. (2012) Differences in intradomain and interdomain motion confer distinct activation properties to structurally similar $G{\alpha}$ proteins. Proc. Natl. Acad. Sci. U.S.A. 109, 7275-7279. https://doi.org/10.1073/pnas.1202943109
  15. Kang, Y., Zhou, X. E., Gao, X., He, Y., Liu, W., Ishchenko, A., Barty, A., White, T. A., Yefanov, O., Han, G. W., Xu, Q., Waal, P. W., Ke, J., Tan, M. H., Zhang, C., Moeller, A., West, G. M., Pascal, B. D., Van Eps, N., Caro, L. N., Vishnivetskiy, S. A., Lee, R. J., Suino-Powell, K. M., Gu, X., Pal, K., Ma, J., Zhi, X., Boutet, S., Williams, G. J., Messerschmidt, M., Gati, C., Zatsepin, N. A., Wang, D., James, D., Basu, S., Roy-Chowdhury, S., Conrad, C. E., Coe, J., Liu, H., Lisova, S., Kupitz, C., Grotjohann, I., Fromme, R., Jiang, Y., Tan, M., Yang, H., Li, J., Wang, M., Zheng, Z., Li, D., Howe, N., Zhao, Y., Standfuss, J., Diederichs, K., Dong, Y., Potter, C. S., Carragher, B., Caffrey, M., Jiang, H., Chapman, H. N., Spence, J. C. H., Fromme, P., Weierstall, U., Ernst, O. P., Katritch, V., Gurevich, V. V., Griffin, P. R., Hubbell, W. L., Stevens, R. C., Cherezov, V., Melcher, K. and Xu, H. E. (2015) Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature 523, 561-567. https://doi.org/10.1038/nature14656
  16. Kaya, A. I., Lokits, A. D., Gilbert, J. A., Iverson, T. M., Meiler, J. and Hamm, H. E. (2014) A conserved phenylalanine as a relay between the ${\alpha}5$ helix and the GDP binding region of heterotrimeric Gi protein ${\alpha}$ subunit. J. Biol. Chem. 289, 24475-24487. https://doi.org/10.1074/jbc.M114.572875
  17. Kolan, D., Fonar, G. and Samson, A. O. (2014) Elastic network normal mode dynamics reveal the GPCR activation mechanism. Proteins 82, 579-586. https://doi.org/10.1002/prot.24426
  18. Kruse, A. C., Ring, A. M., Manglik, A., Hu, J., Hu, K., Eitel, K., Hubner, H., Pardon, E., Valant, C., Sexton, P. M., Christopoulos, A., Felder, C. C., Gmeiner, P., Steyaert, J., Weis, W. I., Garcia, K. C., Wess, J. and Kobilka, B. K. (2013) Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature 504, 101-106. https://doi.org/10.1038/nature12735
  19. Lambright, D. G., Noel, J. P., Hamm, H. E. and Sigler, P. B. (1994) Structural determinants for activation of the ${\alpha}$-subunit of a heterotrimeric G protein. Nature 369, 621-628. https://doi.org/10.1038/369621a0
  20. Lambright, D. G., Sondek, J., Bohm, A., Skiba, N. P., Hamm, H. E. and Sigler, P. B. (1996) The 2.0 A crystal structure of a heterotrimeric G protein. Nature 379, 311-319. https://doi.org/10.1038/379311a0
  21. Louet, M., Karakas, E., Perret, A., Perahia, D., Martinez, J. and Floquet, N. (2013) Conformational restriction of G-proteins Coupled Receptors (GPCRs) upon complexation to G-proteins: a putative activation mode of GPCRs. FEBS Lett. 587, 2656-2661. https://doi.org/10.1016/j.febslet.2013.06.052
  22. Lutz, S., Shankaranarayanan, A., Coco, C., Ridilla, M., Nance, M. R., Vettel, C., Baltus, D., Evelyn, C. R., Neubig, R. R., Wieland, T. and Tesmer, J. J. (2007) Structure of $G{\alpha}q$-p63RhoGEF-RhoA complex reveals a pathway for the activation of RhoA by GPCRs. Science 318, 1923-1927. https://doi.org/10.1126/science.1147554
  23. Manglik, A., Kim, T. H., Masureel, M., Altenbach, C., Yang, Z., Hilger, D., Lerch, M. T., Kobilka, T. S., Thian, F. S., Hubbell, W. L., Prosser, R. S. and Kobilka, B. K. (2015) Structural insights into the dynamic process of ${\beta}2$-adrenergic receptor signaling. Cell 161, 1101-1111. https://doi.org/10.1016/j.cell.2015.04.043
  24. Markby, D. W., Onrust, R. and Bourne, H. B. (1993) Separate GTP binding and GTPase activating domains of a G ${\alpha}$ subunit. Science 262, 1895-1901. https://doi.org/10.1126/science.8266082
  25. Mary, S., Damian, M., Louet, M., Floquet, N., Fehrentz, J. A., Marie, J., Martinez, J. and Baneres, J. L. (2012) Ligands and signaling proteins govern the conformational landscape explored by a G protein-coupled receptor. Proc. Natl. Acad. Sci. U.S.A. 109, 8304-8309. https://doi.org/10.1073/pnas.1119881109
  26. Mixon, M. B., Lee, E., Coleman, D. E., Berghuis, A. M., Gilman, A. G. and Sprang, S. R. (1995) Tertiary and quaternary structural changes in Gi ${\alpha}$ 1 induced by GTP hydrolysis. Science 270, 954-960. https://doi.org/10.1126/science.270.5238.954
  27. Mnpotra, J. S., Qiao, Z., Cai, J., Lynch, D. L., Grossfield, A., Leioatts, N., Hurst, D. P., Pitman, M. C., Song, Z. H. and Reggio, P. H. (2014) Structural basis of G protein-coupled receptor-Gi protein interaction: formation of the cannabinoid CB2 receptor-Gi protein complex. J. Biol. Chem. 289, 20259-20272. https://doi.org/10.1074/jbc.M113.539916
  28. Moreira, I. S. (2014) Structural features of the G-protein/GPCR interactions. Biochim. Biophys. Acta 1840, 16-33. https://doi.org/10.1016/j.bbagen.2013.08.027
  29. Moreno, E., Hoffmann, H., Gonzalez-Sepulveda, M., Navarro, G., Casado, V., Cortes, A., Mallol, J., Vignes, M., McCormick, P. J., Canela, E. I., Lluis, C., Moratalla, R., Ferre, S., Ortiz, J. and Franco, R. (2011) Dopamine D1-histamine H3 receptor heteromers provide a selective link to MAPK signaling in GABAergic neurons of the direct striatal pathway. J. Biol. Chem. 286, 5846-5854. https://doi.org/10.1074/jbc.M110.161489
  30. Navarro, G., Cordomi, A., Zelman-Femiak, M., Brugarolas, M., Moreno, E., Aguinaga, D., Perez-Benito, L., Cortes, A., Casado, V., Mallol, J., Canela, E. I., Lluis, C., Pardo, L., Garcia-Saez, A. J., McCormick, P. J. and Franco, R. (2016) Quaternary structure of a G-protein-coupled receptor heterotetramer in complex with Gi and Gs. BMC Biol. 14, 26. https://doi.org/10.1186/s12915-016-0247-4
  31. Neer, E. J. (1995) Heterotrimeric G proteins: organizers of transmembrane signals. Cell 80, 249-257. https://doi.org/10.1016/0092-8674(95)90407-7
  32. Neves, S. R., Ram, P. T. and Iyengar, R. (2002) G Protein Pathways. Sciences 296, 1636-1639. https://doi.org/10.1126/science.1071550
  33. Nishimura, A., Kitano, K., Takasakic, J., Taniguchic, M., Mizunoa, N., Tagoa, K., Hakoshim, T. and Itoh, H. (2010) Structural basis for the specific inhibition of heterotrimeric Gq protein by a small molecule. Proc. Natl. Acad. Sci. U.S.A. 107, 13666-13671. https://doi.org/10.1073/pnas.1003553107
  34. Noel, J. P., Hamm, H. E. and Sigler, P. B. (1993) The 2.2 A crystal structure of transducin-${\alpha}$ complexed with $GTP{\gamma}S$. Nature 366, 654-663. https://doi.org/10.1038/366654a0
  35. Nygaard, R., Zou, Y., Dror, R. O., Mildorf, T. J., Arlow, D. H., Manglik, A., Pan, A. C., Liu, C. W., Fung, J. J., Bokoch, M. P., Thian, F. S., Kobilka, T. S., Shaw, D. E., Mueller, L., Prosser, R. S. and Kobilka, B. K. (2013) The dynamic process of ${\beta}2$-adrenergic receptor activation. Cell 152, 532-542. https://doi.org/10.1016/j.cell.2013.01.008
  36. Pachov, D. V., Fonseca, R., Arnol, D., Bernauer, J. and van den Bedem, H. (2016) Coupled Motions in ${\beta}_2AR$:$G{\alpha}s$ Conformational Ensembles. J. Chem. Theory Comput. 12, 946-956. https://doi.org/10.1021/acs.jctc.5b00995
  37. Park, J. Y., Lee, S. Y., Kim, H. R., Seo, M. D. and Chung, K. Y. (2016) Structural mechanism of GPCR-arrestin interaction: recent breakthroughs. Arch. Pharm. Res. 39, 293-301. https://doi.org/10.1007/s12272-016-0712-1
  38. Preininger, A. M., Meiler, J. and Hamm, H. E. (2013) Conformational flexibility and structural dynamics in GPCR-mediated G protein activation: a perspective. J. Mol. Biol. 425, 2288-2298. https://doi.org/10.1016/j.jmb.2013.04.011
  39. Rasmussen, S. G., Choi, H. J., Fung, J. J., Pardon, E., Casarosa, P., Chae, P. S., DeVree, B. T., Rosenbaum, D. M., Thian, F. S., Kobilka, T. S., Schnapp, A., Konetzki, I., Sunahara, R. K., Gellman, S. H., Pautsch, A., Steyaert, J., Weis, W. I. and Kobilka, B. K. (2011a) Structure of a nanobody-stabilized active state of the ${\beta}2$ adrenoceptor. Nature 469, 175-180. https://doi.org/10.1038/nature09648
  40. Rasmussen, S. G., DeVree, B. T., Zou, Y., Kruse, A. C., Chung, K. Y., Kobilka, T. S., Thian, F. S., Chae, P. S., Pardon, E., Calinski, D., Mathiesen, J. M., Shah, S. T., Lyons, J. A., Caffrey, M., Gellman, S. H., Steyaert, J., Skiniotis, G., Weis, W. I., Sunahara, R. K. and Kobilka, B. K. (2011b) Crystal structure of the ${\beta}2$ adrenergic receptor-Gs protein complex. Nature 477, 549-555. https://doi.org/10.1038/nature10361
  41. Richardson, M. and Robishaw, J. D. (1999) The ${\alpha}_{2A}$-adrenergic receptor discriminates between Gi heterotrimers of different ${\beta}{\gamma}$ subunit composition in Sf9 insect cell membranes. J. Biol. Chem. 274, 13525-13533. https://doi.org/10.1074/jbc.274.19.13525
  42. Ross, E. M. and Gilman, A. G. (1980) Biochemical properties of hormone-sensitive adenylate cyclase. Annu. Rev. Biochem. 49, 533-564. https://doi.org/10.1146/annurev.bi.49.070180.002533
  43. Shim, J. Y., Ahn, K. H. and Kendall, D. A. (2013) Molecular basis of cannabinoid CB1 receptor coupling to the G protein heterotrimer $G{\alpha}i{\beta}{\gamma}$: identification of key CB1 contacts with the C-terminal helix ${\alpha}5$ of $G{\alpha}i$. J. Biol. Chem. 288, 32449-32465. https://doi.org/10.1074/jbc.M113.489153
  44. Siehler, S. (2009) Regulation of RhoGEF proteins by G12/13-coupled receptors. Br. J. Pharmacol. 158, 41-49. https://doi.org/10.1111/j.1476-5381.2009.00121.x
  45. Simon, M. I., Strathmann, M. P. and Gautam, N. (1991) Diversity of G proteins in signal transduction. Science 252, 802-808. https://doi.org/10.1126/science.1902986
  46. Sondek, J., Lambright, D. G., Noel, J. P., Hamm, H. E. and Sigler, P. B. (1994) GTPase mechanism of Gproteins from the 1.7-A crystal structure of transducin ${\alpha}$-GDP-AIF-4. Nature 372, 276-279. https://doi.org/10.1038/372276a0
  47. Staus, D. P., Strachan, R. T., Manglik, A., Pani, B., Kahsai, A. W., Kim, T. H., Wingler, L. M., Ahn, S., Chatterjee, A., Masoudi, A., Kruse, A. C., Pardon, E., Steyaert, J., Weis, W. I., Prosser, R. S., Kobilka, B. K., Costa, T. and Lefkowitz, R. J. (2016) Allosteric nanobodies reveal the dynamic range and diverse mechanisms of G-protein-coupled receptor activation. Nature 535, 448-452. https://doi.org/10.1038/nature18636
  48. Sun, D., Flock, T., Deupi, X., Maeda, S., Matkovic, M., Mendieta, S., Mayer, D., Dawson, R. J., Schertler, G. F., Babu, M. M. and Veprintsev, D. B. (2015) Probing $G{\alpha}i1$ protein activation at single-amino acid resolution. Nat. Struct. Mol. Biol. 22, 686-694. https://doi.org/10.1038/nsmb.3070
  49. Szczepek, M., Beyriere, F., Hofmann, K. P., Elgeti, M., Kazmin, R., Rose, A., Bartl, F. J., von Stetten, D., Heck, M., Sommer, M. E., Hildebrand, P. W. and Scheerer, P. (2014) Crystal structure of a common GPCR-binding interface for G protein and arrestin. Nat. Commun. 5, 4801. https://doi.org/10.1038/ncomms5801
  50. Wall, M. A., Coleman, D. E., Lee, E., Iniguez-Lluhi, J. A., Posner, B. A., Gilman, A. G. and Sprang, S. R. (1995) The structure of the G protein heterotrimer Gi ${\alpha}$ 1 ${\beta}$ 1 gamma 2. Cell 83, 1047-1058. https://doi.org/10.1016/0092-8674(95)90220-1
  51. Yao, X. Q. and Grant, B. J. (2013) Domain-opening and dynamic coupling in the ${\alpha}$-subunit of heterotrimeric G proteins. Biophys. J. 105, L08-L10. https://doi.org/10.1016/j.bpj.2013.06.006
  52. Yao, X. Q., Malik, R. U., Griggs, N. W., Skjaerven, L., Traynor, J. R., Sivaramakrishnan, S. and Grant, B. J. (2016) Dynamic Coupling and Allosteric Networks in the ${\alpha}$ Subunit of Heterotrimeric G Proteins. J. Biol. Chem. 291, 4742-4753. https://doi.org/10.1074/jbc.M115.702605

Cited by

  1. Conceptual Progress for the Improvements in the Selectivity and Efficacy of G Protein-Coupled Receptor Therapeutics: An Overview vol.25, pp.1, 2017, https://doi.org/10.4062/biomolther.2016.262
  2. Long‐distance communication in Arabidopsis involving a self‐activating G protein vol.2, pp.2, 2017, https://doi.org/10.1002/pld3.37
  3. Small Molecule Inhibitors Targeting Gα i 2 Protein Attenuate Migration of Cancer Cells vol.12, pp.6, 2017, https://doi.org/10.3390/cancers12061631
  4. The Signaling Pathways Involved in the Anticonvulsive Effects of the Adenosine A 1 Receptor vol.22, pp.1, 2021, https://doi.org/10.3390/ijms22010320