References
-
Ahn, S., Kim, J., Hara, M. R., Ren, X. R. and Lefkowitz, R. J. (2009)
${\beta}$ -arrestin-2 mediates anti-apoptotic signaling through regulation of BAD phosphorylation. J. Biol. Chem. 284, 8855-8856. https://doi.org/10.1074/jbc.M808463200 - Alonso, N., Zappia, C. D., Cabrera, M., Davio, C. A., Shayo, C., Monczor, F. and Fernandez, N. C. (2015) Physiological implications of biased signaling at histamine H2 receptors. Front. Pharmacol. 6, 45.
-
Angers, S., Salahpour, A., Joly, E., Hilairet, S., Chelsky, D., Dennis, M. and Bouvier, M. (2000) Detection of
${\beta}_2$ -adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (BRET). Proc. Natl. Acad. Sci. U.S.A. 97, 3684-3689. - Aplin, M., Christensen, G. L., Schneider, M., Heydorn, A., Gammeltoft, S., Kjolbye, A. L., Sheikh, S. P. and Hansen, J. L. (2007) The angiotensin type 1 receptor activates extracellular signal-regulated kinases 1 and 2 by G protein-dependent and -independent pathways in cardiac myocytes and Langendorff-perfused hearts. Basic Clin. Pharmacol. Toxicol. 100, 289-295. https://doi.org/10.1111/j.1742-7843.2007.00063.x
-
Aurora, A. B., Mahmoud, A. I., Luo, X., Johnson, B. A., van Rooij, E., Matsuzaki, S., Humphries, K. M., Hill, J. A., Bassel-Duby, R., Sadek, H. A. and Olson, E. N. (2012) MicroRNA-214 protects the mouse heart from ischemic injury by controlling
$Ca^{2+}$ overload and cell death. J. Clin. Invest. 122, 1222-1232. https://doi.org/10.1172/JCI59327 - Bagnato, A., Salani, D., Di Castro, V., Wu-Wong, J. R., Tecce, R., Nicotra, M. R., Venuti, A. and Natali, P. G. (1999) Expression of endothelin 1 and endothelin A receptor in ovarian carcinoma: Evidence for an autocrine role in tumor growth. Cancer Res. 59, 720-727.
-
Beaulieu, J. M., Sotnikova, T. D., Marion, S., Lefkowitz, R. J., Gainetdinov, R. R. and Caron, M. G. (2005) An Akt/
${\beta}$ -arrestin 2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior. Cell 122, 261-273. https://doi.org/10.1016/j.cell.2005.05.012 - Bockaert, J. and Pin, J. P. (1999) Molecular tinkering of G protein-coupled receptors: an evolutionary success. EMBO J. 18, 1723-1729. https://doi.org/10.1093/emboj/18.7.1723
-
Boerrigter, G., Lark, M. W., Whalen, E. J., Soergel, D. G., Violin, J. D. and Burnett, J. C., Jr. (2011) Cardiorenal actions of TRV120027, a novel
${\beta}$ -arrestin-biased ligand at the angiotensin II yype I receptor, in healthy and heart failure canines: a novel therapeutic strategy for acute heart failure. Circ. Heart Fail. 4, 770-778. https://doi.org/10.1161/CIRCHEARTFAILURE.111.962571 - Brame, A. L., Maguire, J. J., Yang, P. R., Dyson, A., Torella, R., Cheriyan, J., Singer, M., Glen, R. C., Wilkinson, I. B. and Davenport, A. P. (2015) Design, characterization and first-in-human study of the vascular actions of a novel biased apelin receptor agonist. Hypertension 65, 834-840. https://doi.org/10.1161/HYPERTENSIONAHA.114.05099
- Brunvand, H., Liu, G. L., Ma, X. L., Yue, T. L., Ruffolo, R. R., Jr. and Feuerstein, G. Z. (1998) SB 211475, a metabolite of carvedilol, reduces infarct size after myocardial ischemic and reperfusion injury in rabbits. Eur. J. Pharmacol. 356, 193-198. https://doi.org/10.1016/S0014-2999(98)00494-4
- Burnier, M. and Brunner, H. R. (2000) Angiotensin II receptor antagonists. Lancet 355, 637-645. https://doi.org/10.1016/S0140-6736(99)10365-9
- Butcher, A. J., Prihandoko, R., Kong, K. C., McWilliams, P., Edwards, J. M., Bottrill, A., Mistry, S. and Tobin, A. B. (2011) Differential G-protein-coupled receptor phosphorylation provides evidence for a signaling bar code. J. Biol. Chem. 286, 11506-11518. https://doi.org/10.1074/jbc.M110.154526
- Byers, M. A., Calloway, P. A., Shannon, L., Cunningham, H. D., Smith, S., Li, F., Fassold, B. C. and Vines, C. M. (2008) Arrestin 3 mediates endocytosis of CCR7 following ligation of CCL19 but not CCL21. J. Immunol. 181, 4723-4732. https://doi.org/10.4049/jimmunol.181.7.4723
-
Ceraudo, E., Galanth, C., Carpentier, E., Banegas-Font, I., Schonegge, A. M., Alvear-Perez, R., Iturrioz, X., Bouvier, M. and Llorens-Cortes, C. (2014) Biased signaling favoring
$G_i$ over${\beta}$ -arrestin promoted by an apelin fragment lacking the C-terminal phenylalanine. J. Biol. Chem. 289, 24599-24610. https://doi.org/10.1074/jbc.M113.541698 - Chandra, S. M., Razavi, H., Kim, J., Agrawal, R., Kundu, R. K., Perez, V. D., Zamanian, R. T., Quertermous, T. and Chun, H. J. (2011) Disruption of the apelin-APJ system worsens hypoxia-induced pulmonary hypertension. Arterioscler. Thromb. Vasc. Biol. 31, 814-820. https://doi.org/10.1161/ATVBAHA.110.219980
-
Chen, X., Sassano, M. F., Zheng, L. Y., Setola, V., Chen, M., Bai, X., Frye, S. V., Wetsel, W. C., Roth, B. L. and Jin, J. (2012) Structurefunctional selectivity relationship studies of
${\beta}$ -arrestin-biased dopamine D-2 receptor agonists. J. Med. Chem. 55, 7141-7153. https://doi.org/10.1021/jm300603y -
Chen, X. T., Pitis, P., Liu, G. D., Yuan, C., Gotchev, D., Cowan, C. L., Rominger, D. H., Koblish, M., DeWire, S. M., Crombie, A. L., Violin, J. D. and Yamashita, D. S. (2013) Structure-activity relationships and discovery of a G protein biased
${\mu}$ opioid receptor ligand, [(3-methoxythiophen-2-yl)methyl]({2-[(9R)-9-(pyridin-2-yl)-6-oxaspiro-[4.5]decan-9-yl]ethyl})amine (TRV130), for the treatment of acute severe pain. J. Med. Chem. 56, 8019-8031. https://doi.org/10.1021/jm4010829 -
Chesley, A., Lundberg, M. S., Asai, T., Xiao, R. P., Ohtani, S., Lakatta, E. G. and Crow, M. T. (2000) The
${\beta}2$ -adrenergic receptor delivers an antiapoptotic signal to cardiac myocytes through$G_i$ -dependent coupling to phosphatidylinositol 3'-kinase. Circ. Res. 87, 1172-1179. https://doi.org/10.1161/01.RES.87.12.1172 - Chong, K. S., Gardner, R. S., Morton, J. J., Ashley, E. A. and Mc-Donagh, T. A. (2006) Plasma concentrations of the novel peptide apelin are decreased in patients with chronic heart failure. Eur. J. Heart Fail. 8, 355-360. https://doi.org/10.1016/j.ejheart.2005.10.007
- Ciccarelli, M., Chuprun, J. K., Rengo, G., Gao, E., Wei, Z. Y., Peroutka, R. J., Gold, J. I., Gumpert, A., Chen, M., Otis, N. J., Dorn, G. W., Trimarco, B., Iaccarino, G. and Koch, W. J. (2011) G protein-coupled receptor kinase 2 activity impairs cardiac glucose uptake and promotes insulin resistance after myocardial ischemia. Circulation 123, 1953-1962. https://doi.org/10.1161/CIRCULATIONAHA.110.988642
-
Cipolletta, E., Campanile, A., Santulli, G., Sanzari, E., Leosco, D., Campiglia, P., Trimarco, B. and Iaccarino, G. (2009) The G protein coupled receptor kinase 2 plays an essential role in
${\beta}$ -adrenergic receptor-induced insulin resistance. Cardiovasc. Res. 84, 407-415. https://doi.org/10.1093/cvr/cvp252 - Cognetti, F., Bagnato, A., Colombo, N., Savarese, A., Scambia, G., Sehouli, J., Wimberger, P., Sorio, R., Harter, P., Mari, E., McIntosh, S., Nathan, F., Pemberton, K. and Baumann, K. (2013) A Phase II, randomized, double-blind study of zibotentan (ZD4054) in combination with carboplatin/paclitaxel versus placebo in combination with carboplatin/paclitaxel in patients with advanced ovarian cancer sensitive to platinum-based chemotherapy (AGO-OVAR 2.14) Gynecol. Oncol. 130, 31-37. https://doi.org/10.1016/j.ygyno.2012.12.004
-
Conroy, J. L., Free, R. B. and Sibley, D. R. (2015) Identification of G protein-biased agonists that fail to recruit
${\beta}$ -arrestin or promote internalization of the D1 dopamine receptor. ACS Chem. Neurosci. 6, 681-692. https://doi.org/10.1021/acschemneuro.5b00020 - Cook, S. A., Varela-Carver, A., Mongillo, M., Kleinert, C., Khan, M. T., Leccisotti, L., Strickland, N., Matsui, T., Das, S., Rosenzweig, A., Punjabi, P. and Camici, P. G. (2010) Abnormal myocardial insulin signalling in type 2 diabetes and left-ventricular dysfunction. Eur. Heart J. 31, 100-111. https://doi.org/10.1093/eurheartj/ehp396
-
Daaka, Y., Luttrell, L. M. and Lefkowitz, R. J. (1997) Switching of the coupling of the
${\beta}2$ -adrenergic receptor to different G proteins by protein kinase A. Nature 390, 88-91. https://doi.org/10.1038/36362 -
DeWire, S. M., Ahn, S., Lefkowitz, R. J. and Shenoy, S. K. (2007)
${\beta}$ -arrestins and cell signaling. Annu. Rev. Physiol. 69, 483-510. https://doi.org/10.1146/annurev.physiol.69.022405.154749 -
DeWire, S. M., Yamashita, D. S., Rominger, D. H., Liu, G. D., Cowan, C. L., Graczyk, T. M., Chen, X. T., Pitis, P. M., Gotchev, D., Yuan, C., Koblish, M., Lark, M. W. and Violin, J. D. (2013) A G proteinbiased ligand at the
${\mu}$ -opioid receptor is potently analgesic with reduced gastrointestinal and respiratory dysfunction compared with morphine. J. Pharmacol. Exp. Ther. 344, 708-717. https://doi.org/10.1124/jpet.112.201616 - Doughty, R. N., Whalley, G. A., Walsh, H., Gamble, G., Sharpe, N. and Investigat, C. E. S. (2001) Effects of carvedilol on left ventricular remodelling in patients following acute myocardial infarction: The CAPRICORN echo substudy. Circulation 104, 517.
- Dulin, B. and Abraham, W. T. (2004) Pharmacology of carvedilol. Am. J. Cardiol. 93, 3B-6B.
- Dunn, C. J., Lea, A. P. and Wagstaff, A. J. (1997) Carvedilol. A reappraisal of its pharmacological properties and therapeutic use in cardiovascular disorders. Drugs 54, 161-185. https://doi.org/10.2165/00003495-199754010-00015
- Eglen, R. M., Bosse, R. and Reisine, T. (2007) Emerging concepts of guanine nucleotide-binding protein-coupled receptor (GPCR) function and implications for high throughput screening. Assay Drug Dev. Technol. 5, 425-451. https://doi.org/10.1089/adt.2007.062
-
Emamian, E. S., Hall, D., Birnbaum, M. J., Karayiorgou, M. and Gogos, J. A. (2004) Convergent evidence for impaired AKT1-GSK3
${\beta}$ signaling in schizophrenia. Nat. Genet. 36, 131-137. https://doi.org/10.1038/ng1296 - Ferguson, S. S. (2001) Evolving concepts in G protein-coupled receptor endocytosis: The role in receptor desensitization and signaling. Pharmacol. Rev. 53, 1-24.
- Follin-Arbelet, V., Torgersen, M. L., Naderi, E. H., Misund, K., Sundan, A. and Blomhoff, H. K. (2013) Death of multiple myeloma cells induced by cAMP-signaling involves downregulation of Mcl-1 via the JAK/STAT pathway. Cancer Lett. 335, 323-331. https://doi.org/10.1016/j.canlet.2013.02.042
-
Free, R. B., Chun, L. S., Moritz, A. E., Miller, B. N., Doyle, T. B., Conroy, J. L., Padron, A., Meade, J. A., Xiao, J. B., Hu, X., Dulcey, A. E., Han, Y., Duan, L. H., Titus, S., Bryant-Genevier, M., Barnaeva, E., Ferrer, M., Javitch, J. A., Beuming, T., Shi, L., Southall, N. T., Marugan, J. J. and Sibley, D. R. (2014) Discovery and characterization of a G protein-biased agonist that inhibits
${\beta}$ -arrestin recruitment to the$D_2$ dopamine receptor. Mol. Pharmacol. 86, 96-105. https://doi.org/10.1124/mol.113.090563 -
Fu, Q., Xu, B., Liu, Y. M., Parikh, D., Li, J., Li, Y., Zhang, Y., Riehle, C., Zhu, Y., Rawlings, T., Shi, Q., Clark, R. B., Chen, X. W., Abel, E. D. and Xiang, Y. K. (2014) Insulin inhibits cardiac contractility by inducing a
$G_i$ -biased${\beta}_2$ -adrenergic signaling in hearts. Diabetes 63, 2676-2689. https://doi.org/10.2337/db13-1763 -
Gautam, N., Downes, G. B., Yan, K. and Kisselev, O. (1998) The G-protein
${\beta}$ gamma complex. Cell. Signal. 10, 447-455. https://doi.org/10.1016/S0898-6568(98)00006-0 - Gether, U. (2000) Uncovering molecular mechanisms involved in activation of G protein-coupled receptors. Endocr. Rev. 21, 90-113. https://doi.org/10.1210/edrv.21.1.0390
-
Gong, K. Z., Li, Z. J., Xu, M., Du, J. H., Lv, Z. Z. and Zhang, Y. Y. (2008) A novel protein kinase A-independent,
${\beta}$ -arrestin-1-dependent signaling pathway for p38 mitogen-activated protein kinase activation by${\beta}_2$ -adrenergic receptors. J. Biol. Chem. 283, 29028-29036. https://doi.org/10.1074/jbc.M801313200 -
Groer, C. E., Schmid, C. L., Jaeger, A. M. and Bohn, L. M. (2011) Agonist-directed interactions with specific
${\beta}$ -arrestins determine muopioid receptor trafficking, ubiquitination and dephosphorylation. J. Biol. Chem. 286, 31731-31741. https://doi.org/10.1074/jbc.M111.248310 - Guil, S. and Caceres, J. F. (2007) The multifunctional RNA-binding protein hnRNP A1 is required for processing of miR-18a. Nat. Struct. Mol. Biol. 14, 591-596. https://doi.org/10.1038/nsmb1250
- Guleng, B., Tateishi, K., Ohta, M., Kanai, F., Jazag, A., Ijichi, F., Tanaka, Y., Washida, M., Morikane, K., Fukushima, Y., Yamori, T., Tsuruo, T., Kawabe, T., Miyagishi, M., Taira, K., Sata, M. and Omata, M. (2005) Blockade of the stromal cell-derived factor-1/CXCR4 axis attenuates in vivo tumor growth by inhibiting angiogenesis in a vascular endothelial growth factor-independent manner. Cancer Res. 65, 5864-5871. https://doi.org/10.1158/0008-5472.CAN-04-3833
- Habata, Y., Fujii, R., Hosoya, M., Fukusumi, S., Kawamata, Y., Hinuma, S., Kitada, C., Nishizawa, N., Murosaki, S., Kurokawa, T., Onda, H., Tatemoto, K. and Fujino, M. (1999) Apelin, the natural ligand of the orphan receptor APJ, is abundantly secreted in the colostrum. Biochim. Biophys. Acta 1452, 25-35. https://doi.org/10.1016/S0167-4889(99)00114-7
- Hamm, H. E. (1998) The many faces of G protein signaling. J. Biol. Chem. 273, 669-672. https://doi.org/10.1074/jbc.273.2.669
- Hermans, E. (2003) Biochemical and pharmacological control of the multiplicity of coupling at G-protein-coupled receptors. Pharmacol. Ther. 99, 25-44. https://doi.org/10.1016/S0163-7258(03)00051-2
-
Hoffmann, C., Ziegler, N., Reiner, S., Krasel, C. and Lohse, M. J. (2008) Agonist-selective, receptor-specific interaction of human P2Y receptors with
${\beta}$ -arrestin-1 and -2. J. Biol. Chem. 283, 30933-30941. https://doi.org/10.1074/jbc.M801472200 - Hosoya, M., Kawamata, Y., Fukusumi, S., Fujii, R., Habata, Y., Hinuma, S., Kitada, C., Honda, S., Kurokawa, T., Onda, H., Nishimura, O. and Fujino, M. (2000) Molecular and functional characteristics of APJ - Tissue distribution of mRNA and interaction with the endogenous ligand apelin. J. Biol. Chem. 275, 21061-21067. https://doi.org/10.1074/jbc.M908417199
- Ikeda, Y., Kumagai, H., Motozawa, Y., Suzuki, J. and Komuro, I. (2015) Biased agonism of the angiotensin II type I receptor a potential strategy for the rreatment of acute heart failure. Int. Heart J. 56, 485-488. https://doi.org/10.1536/ihj.15-256
- Japp, A. G. and Newby, D. E. (2008) The apelin-APJ system in heart failure pathophysiologic relevance and therapeutic potential. Biochem. Pharmacol. 75, 1882-1892. https://doi.org/10.1016/j.bcp.2007.12.015
- Jean-Alphonse, F., Perkovska, S., Frantz, M. C., Durroux, T., Mejean, C., Morin, D., Loison, S., Bonnet, D., Hibert, M., Mouillac, B. and Mendre, C. (2009) Biased agonist pharmacochaperones of the AVP V2 receptor may treat congenital nephrogenic diabetes insipidus. J. Am. Soc. Nephrol. 20, 2190-2203. https://doi.org/10.1681/ASN.2008121289
- Kenakin, T. and Christopoulos, A. (2013) Signalling bias in new drug discovery: detection, quantification and therapeutic impact. Nat. Rev. Drug Discov. 12, 205-216.
-
Kilts, J. D., Gerhardt, M. A., Richardson, M. D., Sreeram, G., Mackensen, G. B., Grocott, H. P., White, W. D., Davis, R. D., Newman, M. F., Reves, J. G., Schwinn, D. A. and Kwatra, M. M. (2000)
${\beta}2$ -adrenergic and several other G protein-coupled receptors in human atrial membranes activate both$G_s$ and$G_i$ . Circ. Res. 87, 705-709. https://doi.org/10.1161/01.RES.87.8.705 -
Kim, I. M., Tilley, D. G., Chen, J., Salazar, N. C., Whalen, E. J., Violin, J. D. and Rockman, H. A. (2008)
${\beta}$ -blockers alprenolol and carvedilol stimulate${\beta}$ -arrestin-mediated EGFR transactivation. Proc. Natl. Acad. Sci. U.S.A. 105, 14555-14560. https://doi.org/10.1073/pnas.0804745105 -
Kim, I. M., Wang, Y. C., Park, K. M., Tang, Y. P., Teoh, J. P., Vinson, J., Traynham, C. J., Pironti, G., Mao, L., Su, H. B., Johnson, J. A., Koch, W. J. and Rockman, H. A. (2014)
${\beta}$ -arrestin1-biased${\beta}_1$ -adrenergic receptor signaling regulates microRNA processing. Circ. Res. 114, 833-844. https://doi.org/10.1161/CIRCRESAHA.114.302766 -
Kim, J., Ahn, S., Ren, X. R., Whalen, E. J., Reiter, E., Wei, H. J. and Lefkowitz, R. J. (2005) Functional antagonism of different G protein-coupled receptor kinases for
${\beta}$ -arrestin-mediated angiotensin II receptor signaling. Proc. Natl. Acad. Sci. U.S.A. 102, 1442-1447. https://doi.org/10.1073/pnas.0409532102 - Lee, Y., Ahn, C., Han, J. J., Choi, H., Kim, J., Yim, J., Lee, J., Provost, P., Radmark, O., Kim, S. and Kim, V. N. (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415-419. https://doi.org/10.1038/nature01957
-
Lefkowitz, R. J. (1998) G protein-coupled receptors III. New roles for receptor kinases and
${\beta}$ -arrestins in receptor signaling and desensitization. J. Biol. Chem. 273, 18677-18680. https://doi.org/10.1074/jbc.273.30.18677 - Lefkowitz, R. J. (2013) Arrestins come of age: a personal historical perspective. Prog. Mol. Biol. Transl. Sci. 118, 3-18.
- Leurs, R., Chazot, P. L., Shenton, F. C., Lim, H. D. and de Esch, I. J. (2009) Molecular and biochemical pharmacology of the histamine H4 receptor. Br. J. Pharmacol. 157, 14-23. https://doi.org/10.1111/j.1476-5381.2009.00250.x
-
Liu, J. J., Horst, R., Katritch, V., Stevens, R. C. and Wuthrich, K. (2012) Biased signaling pathways in
${\beta}_2$ -adrenergic receptor characterized by$^{19}F$ -NMR. Science 335, 1106-1110. https://doi.org/10.1126/science.1215802 -
Luan, B., Zhao, J., Wu, H. Y., Duan, B. Y., Shu, G. W., Wang, X. Y., Li, D. S., Jia, W. P., Kang, J. H. and Pei, G. (2009) Deficiency of a
${\beta}$ -arrestin-2 signal complex contributes to insulin resistance. Nature 457, 1146-1149. https://doi.org/10.1038/nature07617 -
Luttrell, L. M., Ferguson, S. S., Daaka, Y., Miller, W. E., Maudsley, S., Della Rocca, G. J., Lin, F. T., Kawakatsu, H., Owada, K., Luttrell, D. K., Caron, M. G. and Lefkowitz, R. J. (1999)
${\beta}$ -arrestin-dependent formation of${\beta}$ (2) adrenergic receptor-Src protein kinase complexes. Science 283, 655-661. https://doi.org/10.1126/science.283.5402.655 -
McCloskey, D. T., Turcato, S., Wang, G. Y., Turnbull, L., Zhu, B. Q., Bambino, T., Nguyen, A. P., Lovett, D. H., Nissenson, R. A., Karliner, J. S. and Baker, A. J. (2008) Expression of a
$G_i$ -coupled receptor in the heart causes impaired$Ca^{2+}$ handling, myofilament injury and dilated cardiomyopathy. Am. J. Physiol. Heart Circ. Physiol. 294, H205-H212. https://doi.org/10.1152/ajpheart.00829.2007 -
McDonald, P. H., Chow, C. W., Miller, W. E., Laporte, S. A., Field, M. E., Lin, F. T., Davis, R. J. and Lefkowitz, R. J. (2000)
${\beta}$ -arrestin 2: a receptor-regulated MAPK scaffold for the activation of JNK3. Science 290, 1574-1577. https://doi.org/10.1126/science.290.5496.1574 -
McPherson, J., Rivero, G., Baptist, M., Llorente, J., Al-Sabah, S., Krasel, C., Dewey, W. L., Bailey, C. P., Rosethorne, E. M., Charlton, S. J., Henderson, G. and Kelly, E. (2010)
${\mu}$ -opioid receptors: correlation of agonist efficacy for signalling with ability to activate internalization. Mol. Pharmacol. 78, 756-766. https://doi.org/10.1124/mol.110.066613 - Milligan, G. (2004) Applications of bioluminescence- and fluorescence resonance energy transfer to drug discovery at G protein-coupled receptors. Eur. J. Pharm. Sci. 21, 397-405. https://doi.org/10.1016/j.ejps.2003.11.010
- Miura, S., Okabe, A., Matsuo, Y., Karnik, S. S. and Saku, K. (2013) Unique binding behavior of the recently approved angiotensin II receptor blocker azilsartan compared with that of candesartan. Hypertens. Res. 36, 134-139. https://doi.org/10.1038/hr.2012.147
-
Mochizuki, M., Yano, M., Oda, T., Tateishi, H., Kobayashi, S., Yamamoto, T., Ikeda, Y., Ohkusa, T., Ikemoto, N. and Matsuzaki, M. (2007) Scavenging free radicals by low-dose carvedilol prevents redox-dependent
$Ca^{2+}$ leak via stabilization of ryanodine receptor in heart failure. J. Am. Coll. Cardiol. 49, 1722-1732. https://doi.org/10.1016/j.jacc.2007.01.064 - Molinari, P., Vezzi, V., Sbraccia, M., Gro, C., Riitano, D., Ambrosio, C., Casella, I. and Costa, T. (2010) Morphine-like opiates selectively antagonize receptor-arrestin interactions. J. Biol. Chem. 285, 12522-12535. https://doi.org/10.1074/jbc.M109.059410
- Morisco, C., Lembo, G. and Trimarco, B. (2006) Insulin resistance and cardiovascular risk: new insights from molecular and cellular biology. Trends Cardiovasc. Med. 16, 183-188. https://doi.org/10.1016/j.tcm.2006.03.008
- Morris, A. J. and Malbon, C. C. (1999) Physiological regulation of G protein-linked signaling. Physiol. Rev. 79, 1373-1430. https://doi.org/10.1152/physrev.1999.79.4.1373
- Morris, D. R., Ding, Y., Ricks, T. K., Gullapalli, A., Wolfe, B. L. and Trejo, J. (2006) Protease-activated receptor-2 is essential for factor VIIa and Xa-induced signaling, migration and invasion of breast cancer cells. Cancer Res. 66, 307-314. https://doi.org/10.1158/0008-5472.CAN-05-1735
- Muller, G. (2000) Towards 3D structures of G protein-coupled receptors: a multidisciplinary approach. Curr. Med. Chem. 7, 861-888. https://doi.org/10.2174/0929867003374534
- Namkung, Y., Radresa, O., Armando, S., Devost, D., Beautrait, A., Le Gouill, C. and Laporte, S. A. (2016) Quantifying biased signaling in GPCRs using BRET-based biosensors. Methods 92, 5-10. https://doi.org/10.1016/j.ymeth.2015.04.010
-
Nevzorova, J., Evans, B. A., Bengtsson, T. and Summers, R. J. (2006) Multiple signalling pathways involved in
${\beta}(2)$ -adrenoceptormediated glucose uptake in rat skeletal muscle cells. Br. J. Pharmacol. 147, 446-454. https://doi.org/10.1038/sj.bjp.0706626 - Nichols, G. A., Hillier, T. A., Erbey, J. R. and Brown, J. B. (2001) Congestive heart failure in type 2 diabetes: prevalence, incidence and risk factors. Diabetes Care 24, 1614-1619. https://doi.org/10.2337/diacare.24.9.1614
-
Nijmeijer, S., Vischer, H. F., Sirci, F., Schultes, S., Engelhardt, H., de Graaf, C., Rosethorne, E. M., Charlton, S. J. and Leurs, R. (2013) Detailed analysis of biased histamine
$H_4$ receptor signalling by JNJ 7777120 analogues. Br. J. Pharmacol. 170, 78-88. https://doi.org/10.1111/bph.12117 -
Nobles, K. N., Xiao, K. H., Ahn, S., Shukla, A. K., Lam, C. M., Rajagopal, S., Strachan, R. T., Huang, T. Y., Bressler, E. A., Hara, M. R., Shenoy, S. K., Gygi, S. P. and Lefkowitz, R. J. (2011) Distinct phosphorylation sites on the
${\beta}_2$ -adrenergic receptor establish a barcode that encodes differential functions of${\beta}$ -arrestin. Sci. Signal. 4, ra51. -
Noma, T., Lemaire, A., Naga Prasad, S. V., Barki-Harrington, L., Tilley, D. G., Chen, J., Le Corvoisier, P., Violin, J. D., Wei, H., Lefkowitz, R. J. and Rockman, H. A. (2007) B-arrestin-mediated
${\beta}_1$ -adrenergic receptor transactivation of the EGFR confers cardioprotection. J. Clin. Invest. 117, 2445-2458. https://doi.org/10.1172/JCI31901 - O'Dowd, B. F., Heiber, M., Chan, A., Heng, H. H., Tsui, L. C., Kennedy, J. L., Shi, X. M., Petronis, A., George, S. R. and Nguyen, T. (1993) A human gene that shows identity with the gene encoding the angiotensin receptor is located on chromosome 11. Gene 136, 355-360. https://doi.org/10.1016/0378-1119(93)90495-O
- Ohsawa, Y. and Hirasawa, N. (2012) The antagonism of histamine H1 and H4 receptors ameliorates chronic allergic dermatitis via antipruritic and anti-inflammatory effects in NC/Nga mice. Allergy 67, 1014-1022. https://doi.org/10.1111/j.1398-9995.2012.02854.x
-
Ohtsuka, T., Hamada, M., Hiasa, G., Sasaki, O., Suzuki, M., Hara, Y., Shigematsu, Y. and Hiwada, K. (2001) Effect of
${\beta}$ -blockers on circulating levels of inflammatory and anti-inflammatory cytokines in patients with dilated cardiomyopathy. J. Am. Coll. Cardiol. 37, 412-417. https://doi.org/10.1016/S0735-1097(00)01121-9 - Overington, J. P., Al-Lazikani, B. and Hopkins, A. L. (2006) How many drug targets are there? Nat. Rev. Drug Discov. 5, 993-996. https://doi.org/10.1038/nrd2199
-
Park, S. M., Chen, M., Schmerberg, C. M., Dulman, R. S., Rodriguiz, R. M., Caron, M. G., Jin, J. and Wetsel, W. C. (2016) Effects of
${\beta}$ -arrestin-biased dopamine D2 receptor ligands on schizophrenialike behavior in hypoglutamatergic mice. Neuropsychopharmacology 41, 704-715. https://doi.org/10.1038/npp.2015.196 - Perrino, C. and Rockman, H. A. (2007) Reversal of cardiac remodeling by modulation of adrenergic receptors: a new frontier in heart failure. Curr. Opin. Cardiol. 22, 443-449. https://doi.org/10.1097/HCO.0b013e3282294d72
- Pitkin, S. L., Maguire, J. J., Bonner, T. I. and Davenport, A. P. (2010) International union of basic and clinical pharmacology. LXXIV. Apelin receptor nomenclature, distribution, pharmacology and function. Pharmacol. Rev. 62, 331-342. https://doi.org/10.1124/pr.110.002949
- Pope, G. R., Roberts, E. M., Lolait, S. J. and O'Carroll, A. M. (2012) Central and peripheral apelin receptor distribution in the mouse: species differences with rat. Peptides 33, 139-148. https://doi.org/10.1016/j.peptides.2011.12.005
- Pradhan, A. A., Perroy, J., Walwyn, W. M., Smith, M. L., Vicente-Sanchez, A., Segura, L., Bana, A., Kieffer, B. L. and Evans, C. J. (2016) Agonist-specific recruitment of arrestin isoforms differentially modify delta opioid receptor function. J. Neurosci. 36, 3541-3551. https://doi.org/10.1523/JNEUROSCI.4124-15.2016
- Quiat, D. and Olson, E. N. (2013) MicroRNAs in cardiovascular disease: from pathogenesis to prevention and treatment. J. Clin. Invest. 123, 11-18. https://doi.org/10.1172/JCI62876
- Rahmeh, R., Damian, M., Cottet, M., Orcel, H., Mendre, C., Durroux, T., Sharma, K. S., Durand, G., Pucci, B., Trinquet, E., Zwier, J. M., Deupi, X., Bron, P., Baneres, J. L., Mouillac, B. and Granier, S. (2012) Structural insights into biased G protein-coupled receptor signaling revealed by fluorescence spectroscopy. Proc. Natl. Acad. Sci. U.S.A. 109, 6733-6738. https://doi.org/10.1073/pnas.1201093109
-
Rajagopal, K., Whalen, E. J., Violin, J. D., Stiber, J. A., Rosenberg, P. B., Premont, R. T., Coffman, T. M., Rockman, H. A. and Lefkowitz, R. J. (2006)
${\beta}$ -arrestin2-mediated inotropic effects of the angiotensin II type 1A receptor in isolated cardiac myocytes. Proc. Natl. Acad. Sci. U.S.A. 103, 16284-16289. https://doi.org/10.1073/pnas.0607583103 - Rajagopal, S., Ahn, S., Rominger, D. H., Gowen-MacDonald, W., Lam, C. M., DeWire, S. M., Violin, J. D. and Lefkowitz, R. J. (2011) Quantifying ligand bias at seven-transmembrane receptors. Mol. Pharmacol. 80, 367-377. https://doi.org/10.1124/mol.111.072801
- Rajagopal, S., Rajagopal, K. and Lefkowitz, R. J. (2010) Teaching old receptors new tricks: biasing seven-transmembrane receptors. Nat. Rev. Drug Discov. 9, 373-386. https://doi.org/10.1038/nrd3024
-
Rane, S., He, M. Z., Sayed, D., Yan, L., Vatner, D. and Abdellatif, M. (2010) An antagonism between the AKT and
${\beta}$ -adrenergic signaling pathways mediated through their reciprocal effects on miR-199a-5p. Cell. Signal. 22, 1054-1062. https://doi.org/10.1016/j.cellsig.2010.02.008 - Rankovic, Z., Brust, T. F. and Bohn, L. M. (2016) Biased agonism: An emerging paradigm in GPCR drug discovery. Bioorg. Med. Chem. Lett. 26, 241-250. https://doi.org/10.1016/j.bmcl.2015.12.024
-
Rashid, A. J., So, C. H., Kong, M. M. C., Furtak, T., El-Ghundi, M., Cheng, R., O'Dowd, B. F. and George, S. R. (2007) D1-D2 dopamine receptor heterooligomers with unique pharmacology are coupled to rapid activation of
$G_q$ /11 in the striatum. Proc. Natl. Acad. Sci. U.S.A. 104, 654-659. https://doi.org/10.1073/pnas.0604049104 -
Reinartz, M. T., Kalble, S., Littmann, T., Ozawa, T., Dove, S., Kaever, V., Wainer, I. W. and Seifert, R. (2015) Structure-bias relationships for fenoterol stereoisomers in six molecular and cellular assays at the
${\beta}2$ -adrenoceptor. Naunyn Schmiedebergs Arch. Pharmacol. 388, 51-65. https://doi.org/10.1007/s00210-014-1054-5 -
Rives, M. L., Rossillo, M., Liu-Chen, L. Y. and Javitch, J. A. (2012) 6'-Guanidinonaltrindole (6'-GNTI) is a G protein-biased
${\kappa}$ -opioid receptor agonist that inhibits arrestin recruitment. J. Biol. Chem. 287, 27050-27054. https://doi.org/10.1074/jbc.C112.387332 -
Rodefeld, M. D., Beau, S. L., Schuessler, R. B., Boineau, J. P. and Saffitz, J. E. (1996)
${\beta}$ -adrenergic and muscarinic cholinergic receptor densities in the human sinoatrial node: identification of a high${\beta}2$ -adrenergic receptor density. J. Cardiovasc. Electrophysiol. 7, 1039-1049. https://doi.org/10.1111/j.1540-8167.1996.tb00479.x -
Rosano, L., Cianfrocca, R., Tocci, P., Spinella, F., Di Castro, V., Spadaro, F., Salvati, E., Biroccio, A. M., Natali, P. G. and Bagnato, A. (2013a)
${\beta}$ -arrestin-1 is a nuclear transcriptional regulator of endothelin-1-induced${\beta}$ -catenin signaling. Oncogene 32, 5066-5077. https://doi.org/10.1038/onc.2012.527 - Rosano, L., Spinella, F. and Bagnato, A. (2013b) Endothelin 1 in cancer: biological implications and therapeutic opportunities. Nat. Rev. Cancer 13, 637-651. https://doi.org/10.1038/nrc3546
- Rosano, L., Spinella, F., Di Castro, V., Nicotra, M. R., Dedhar, S., de Herreros, A. G., Natali, P. G. and Bagnato, A. (2005) Endothelin-1 promotes epithelial-to-mesenchymal transition in human ovarian cancer cells. Cancer Res. 65, 11649-11657. https://doi.org/10.1158/0008-5472.CAN-05-2123
-
Rosethorne, E. M. and Charlton, S. J. (2011) Agonist-biased signaling at the histamine H4 receptor: JNJ7777120 recruits
${\beta}$ -arrestin without activating G proteins. Mol. Pharmacol. 79, 749-757. https://doi.org/10.1124/mol.110.068395 - Rubin, J. B. (2009) Chemokine signaling in cancer: One hump or two? Semin. Cancer Biol. 19, 116-122. https://doi.org/10.1016/j.semcancer.2008.10.001
- Sakurai, T., Yanagisawa, M., Takuwa, Y., Miyazaki, H., Kimura, S., Goto, K. and Masaki, T. (1990) Cloning of a cDNA encoding a nonisopeptide-selective subtype of the endothelin receptor. Nature 348, 732-735. https://doi.org/10.1038/348732a0
- Salloum, F. N., Yin, C. and Kukreja, R. C. (2010) Role of microRNAs in cardiac preconditioning. J. Cardiovasc. Pharmacol. 56, 581-588. https://doi.org/10.1097/FJC.0b013e3181f581ba
- Schorlemmer, A., Matter, M. L. and Shohet, R. V. (2008) Cardioprotective signaling by endothelin. Trends Cardiovasc. Med. 18, 233-239. https://doi.org/10.1016/j.tcm.2008.11.005
-
Schwarz, E. R., Kersting, P. H., Reffelmann, T., Meven, D. A., Al-Dashti, R., Skobel, E. C., Klosterhalfen, B. and Hanrath, P. (2003) Cardioprotection by Carvedilol: antiapoptosis is independent of
${\beta}$ -adrenoceptor blockage in the rat heart. J. Cardiovasc. Pharmacol. Ther. 8, 207-215. https://doi.org/10.1177/107424840300800306 - Scimia, M. C., Hurtado, C., Ray, S., Metzler, S., Wei, K., Wang, J. M., Woods, C. E., Purcell, N. H., Catalucci, D., Akasaka, T., Bueno, O. F., Vlasuk, G. P., Kaliman, P., Bodmer, R., Smith, L. H., Ashley, E., Mercola, M., Brown, J. H. and Ruiz-Lozano, P. (2012) APJ acts as a dual receptor in cardiac hypertrophy. Nature 488, 394-398. https://doi.org/10.1038/nature11263
-
Shenoy, S. K., McDonald, P. H., Kohout, T. A. and Lefkowitz, R. J. (2001) Regulation of receptor fate by ubiquitination of activated
${\beta}2$ -adrenergic receptor and${\beta}$ -arrestin. Science 294, 1307-1313. https://doi.org/10.1126/science.1063866 - Shimizu, I., Minamino, T., Toko, H., Okada, S., Ikeda, H., Yasuda, N., Tateno, K., Moriya, J., Yokoyama, M., Nojima, A., Koh, G. Y., Akazawa, H., Shiojima, I., Kahn, C. R., Abel, E. D. and Komuro, I. (2010) Excessive cardiac insulin signaling exacerbates systolic dysfunction induced by pressure overload in rodents. J. Clin. Invest. 120, 1506-1514. https://doi.org/10.1172/JCI40096
-
Shukla, A. K., Violin, J. D., Whalen, E. J., Gesty-Palmer, D., Shenoy, S. K. and Lefkowitz, R. J. (2008) Distinct conformational changes in
${\beta}$ -arrestin report biased agonism at seven-transmembrane receptors. Proc. Natl. Acad. Sci. U.S.A. 105, 9988-9993. https://doi.org/10.1073/pnas.0804246105 -
Shukla, A. K., Xiao, K. H. and Lefkowitz, R. J. (2011) Emerging paradigms of
${\beta}$ -arrestin-dependent seven transmembrane receptor signaling. Trends Biochem. Sci. 36, 457-469. https://doi.org/10.1016/j.tibs.2011.06.003 -
Skiba, N. P., Bae, H. and Hamm, H. E. (1996) Mapping of effector binding sites of transducin
${\alpha}$ -subunit using$G{\alpha}_t$ /$G{\alpha}_{i1}$ chimeras. J. Biol. Chem. 271, 413-424. https://doi.org/10.1074/jbc.271.1.413 - Soergel, D. G., Subach, R. A., Sadler, B., Connell, J., Marion, A. S., Cowan, C. L., Violin, J. D. and Lark, M. W. (2014) First clinical experience with TRV130: pharmacokinetics and pharmacodynamics in healthy volunteers. J. Clin. Pharmacol. 54, 351-357. https://doi.org/10.1002/jcph.207
- Song, X. F., Coffa, S., Fu, H. A. and Gurevich, V. V. (2009) How does arrestin assemble MAPKs into a signaling complex? J. Biol. Chem. 284, 685-695. https://doi.org/10.1074/jbc.M806124200
-
Song, X. S., Zheng, X. L., Malbon, C. C. and Wang, H. Y. (2001)
$G{\alpha}_{i2}$ enhances in vivo activation of and insulin signaling to GLUT4. J. Biol. Chem. 276, 34651-34658. https://doi.org/10.1074/jbc.M105894200 - Spinella, F., Rosano, L., Di Castro, V., Nicotra, M. R., Natali, P. G. and Bagnato, A. (2004) Inhibition of cyclooxygenase-1 and-2 expression by targeting the endothelin a receptor in human ovarian carcinoma cells. Clin. Cancer Res. 10, 4670-4679. https://doi.org/10.1158/1078-0432.CCR-04-0315
- Takahashi, A., Kato, K., Kuboyama, A., Inoue, T., Tanaka, Y., Kuhara, A., Kinoshita, K., Takeda, S. and Wake, N. (2009) Induction of senescence by progesterone receptor-B activation in response to cAMP in ovarian cancer cells. Gynecol. Oncol. 113, 270-276. https://doi.org/10.1016/j.ygyno.2008.12.032
- Tang, Y. P., Wang, Y. C., Park, K. M., Hu, Q. P., Teoh, J. P., Broskova, Z., Ranganathan, P., Jayakumar, C., Li, J., Su, H. B., Tang, Y. L., Ramesh, G. and Kim, I. M. (2015) MicroRNA-150 protects the mouse heart from ischaemic injury by regulating cell death. Cardiovasc. Res. 106, 387-397. https://doi.org/10.1093/cvr/cvv121
- Teoh, J. P., Park, K. M., Broskova, Z., Jimenez, F. R., Bayoumi, A. S., Archer, K., Su, H. B., Johnson, J., Weintraub, N. L., Tang, Y. and Kim, I. M. (2015) Identification of gene signatures regulated by carvedilol in mouse heart. Physiol. Genomics 47, 376-385. https://doi.org/10.1152/physiolgenomics.00028.2015
- Teoh, J. P., Park, K. M., Wang, Y. C., Hu, Q. P., Kim, S., Wu, G. Y., Huang, S., Maihle, N. and Kim, I. M. (2014) Endothelin-1/Endothelin A receptor-mediated biased signaling is a new player in modulating human ovarian cancer cell tumorigenesis. Cell. Signal. 26, 2885-2895. https://doi.org/10.1016/j.cellsig.2014.08.024
-
Thompson, G. L., Kelly, E., Christopoulos, A. and Canals, M. (2015) Novel GPCR paradigms at the
${\mu}$ -opioid receptor. Br. J. Pharmacol. 172, 287-296. https://doi.org/10.1111/bph.12600 -
Tong, H., Bernstein, D., Murphy, E. and Steenbergen, C. (2005) The role of
${\beta}$ -adrenergic receptor signaling in cardioprotection. FASEB J. 19, 983-985. https://doi.org/10.1096/fj.04-3067fje -
Vanderbeld, B. and Kelly, G. M. (2000) New thoughts on the role of the
${\beta}$ gamma subunit in G protein signal transduction. Biochem. Cell Biol. 78, 537-550. -
Violin, J. D., DeWire, S. M., Yamashita, D., Rominger, D. H., Nguyen, L., Schiller, K., Whalen, E. J., Gowen, M. and Lark, M. W. (2010) Selectively engaging
${\beta}$ -arrestins at the angiotensin II type 1 receptor reduces blood pressure and increases cardiac performance. J. Pharmacol. Exp. Ther. 335, 572-579. https://doi.org/10.1124/jpet.110.173005 -
Viscusi, E., Minkowitz, H., Webster, L., Soergel, D., Burt, D., Subach, R. and Skobieranda, F. (2016) Rapid reduction in pain intensity with oliceridine (TRV130), a novel
${\mu}$ receptor G protein Pathway Selective modulator (${\mu}$ -GPS), vs. Morphine: an analysis of two phase 2 randomized clinical trials. J. Pain 17, S82-S83. - Wacker, D., Wang, C., Katritch, V., Han, G. W., Huang, X. P., Vardy, E., McCorvy, J. D., Jiang, Y., Chu, M. H., Siu, F. Y., Liu, W., Xu, H. E., Cherezov, V., Roth, B. L. and Stevens, R. C. (2013) Structural features for functional selectivity at serotonin receptors. Science 340, 615-619. https://doi.org/10.1126/science.1232808
- Wang, X. H., Ha, T. Z., Zou, J. H., Ren, D. Y., Liu, L., Zhang, X., Kalbfleisch, J., Gao, X., Williams, D. and Li, C. F. (2014) MicroRNA-125b protects against myocardial ischaemia/reperfusion injury via targeting p53-mediated apoptotic signalling and TRAF6. Cardiovasc. Res. 102, 385-395. https://doi.org/10.1093/cvr/cvu044
- Wess, J. (1997) G-protein-coupled receptors: molecular mechanisms involved in receptor activation and selectivity of G-protein recognition. FASEB J. 11, 346-354. https://doi.org/10.1096/fasebj.11.5.9141501
-
White, K. L., Robinson, J. E., Zhu, H., DiBerto, J. F., Polepally, P. R., Zjawiony, J. K., Nichols, D. E., Malanga, C. J. and Roth, B. L. (2015) The G protein-biased
${\kappa}$ -opioid receptor agonist RB-64 is analgesic with a unique spectrum of activities in vivo. J. Pharmacol. Exp. Ther. 352, 98-109. - Williams, D. L., Jr., Jones, K. L., Colton, C. D. and Nutt, R. F. (1991) Identification of high affinity endothelin-1 receptor subtypes in human tissues. Biochem. Biophys. Res. Commun. 180, 475-480. https://doi.org/10.1016/S0006-291X(05)81089-7
- Winpenny, D., Clark, M. and Cawkill, D. (2016) Biased ligand quantification in drug discovery: from theory to high throughput screening to identify new biased opioid receptor agonists. Br. J. Pharmacol. 173, 1393-1403. https://doi.org/10.1111/bph.13441
-
Wisler, J. W., DeWire, S. M., Whalen, E. J., Violin, J. D., Drake, M. T., Ahn, S., Shenoy, S. K. and Lefkowitz, R. J. (2007) A unique mechanism of
${\beta}$ -blocker action: carvedilol stimulates${\beta}$ -arrestin signaling. Proc. Natl. Acad. Sci. U.S.A. 104, 16657-16662. https://doi.org/10.1073/pnas.0707936104 -
Woo, A. Y., Jozwiak, K., Toll, L., Tanga, M. J., Kozocas, J. A., Jimenez, L., Huang, Y., Song, Y., Plazinska, A., Pajak, K., Paul, R. K., Bernier, M., Wainer, I. W. and Xiao, R. P. (2014) Tyrosine 308 is necessary for ligand-directed Gs protein-biased signaling of
${\beta}_2$ -adrenoceptor. J. Biol. Chem. 289, 19351-19363. https://doi.org/10.1074/jbc.M114.558882 -
Woo, A. Y., Wang, T. B., Zeng, X. K., Zhu, W. Z., Abernethy, D. R., Wainer, I. W. and Xiao, R. P. (2009) Stereochemistry of an agonist determines coupling preference of
${\beta}_2$ -adrenoceptor to different G proteins in cardiomyocytes. Mol. Pharmacol. 75, 158-165. https://doi.org/10.1124/mol.108.051078 - Wright, J. J., Kim, J., Buchanan, J., Boudina, S., Sena, S., Bakirtzi, K., Ilkun, O., Theobald, H. A., Cooksey, R. C., Kandror, K. V. and Abel, E. D. (2009) Mechanisms for increased myocardial fatty acid utilization following short-term high-fat feeding. Cardiovasc. Res. 82, 351-360. https://doi.org/10.1093/cvr/cvp017
- Xiang, Y. and Kobilka, B. K. (2003) Myocyte adrenoceptor signaling pathways. Science 300, 1530-1532. https://doi.org/10.1126/science.1079206
-
Xiao, R. P. and Balke, C. W. (2004)
$Na^+$ /$Ca^{2+}$ exchange linking${\beta}_2$ -adrenergic Gi signaling to heart failure: associated defect of adrenergic contractile support. J. Mol. Cell. Cardiol. 36, 7-11. https://doi.org/10.1016/j.yjmcc.2003.10.013 -
Xiao, R. P., Ji, X. W. and Lakatta, E. G. (1995) Functional coupling of the
${\beta}2$ -adrenoceptor to a pertussis toxin-sensitive G protein in cardiac myocytes. Mol. Pharmacol. 47, 322-329. -
Xiao, R. P., Zhang, S. J., Chakir, K., Avdonin, P., Zhu, W. Z., Bond, R. A., Balke, C. W., Lakatta, E. G. and Cheng, H. P. (2003) Enhanced
$G_i$ signaling selectively negates${\beta}_2$ -adrenergic receptor (AR)- but not${\beta}_1$ -AR-mediated positive inotropic effect in myocytes from failing rat hearts. Circulation 108, 1633-1639. https://doi.org/10.1161/01.CIR.0000087595.17277.73 -
Yu, Q. J., Si, R., Zhou, N., Zhang, H. F., Guo, W. Y., Wang, H. C. and Gao, F. (2008) Insulin inhibits
${\beta}$ -adrenergic action in ischemic/reperfused heart: a novel mechanism of insulin in cardioprotection. Apoptosis 13, 305-317. https://doi.org/10.1007/s10495-007-0169-2 -
Yuan, Y. Y., Stevens, D. L., Braithwaite, A., Scoggins, K. L., Bilsky, E. J., Akbarali, H. I., Dewey, W. L. and Zhang, Y. (2012)
$6{\beta}$ -N-heterocyclic substituted naltrexamine derivative NAP as a potential lead to develop peripheral mu opioid receptor selective antagonists. Bioorg. Med. Chem. Lett. 22, 4731-4734. https://doi.org/10.1016/j.bmcl.2012.05.075 -
Zhang, Y., Williams, D. A., Zaidi, S. A., Yuan, Y. Y., Braithwaite, A., Bilsky, E. J., Dewey, W. L., Akbarali, H. I., Streicher, J. M. and Selley, D. E. (2016) 17-cyclopropylmethyl-3,
$14{\beta}$ -dihydroxy-4,$5{\alpha}$ -epoxy-$6{\beta}$ -(4'-pyridylcarboxamido)morphinan (NAP) modulating the mu opioid receptor in a biased fashion. ACS Chem. Neurosci. 7, 297-304. https://doi.org/10.1021/acschemneuro.5b00245 - Zhou, L., Lovell, K. M., Frankowski, K. J., Slauson, S. R., Phillips, A. M., Streicher, J. M., Stahl, E., Schmid, C. L., Hodder, P., Madoux, F., Cameron, M. D., Prisinzano, T. E., Aube, J. and Bohn, L. M. (2013) Development of functionally selective, small molecule agonists at kappa opioid receptors. J. Biol. Chem. 288, 36703-36716. https://doi.org/10.1074/jbc.M113.504381
-
Zhu, W. Z., Zheng, M., Koch, W. J., Lefkowitz, R. J., Kobilka, B. K. and Xiao, R. P. (2001) Dual modulation of cell survival and cell death by
${\beta}_2$ -adrenergic signaling in adult mouse cardiac myocytes. Proc. Natl. Acad. Sci. U.S.A. 98, 1607-1612. https://doi.org/10.1073/pnas.98.4.1607
Cited by
- Conceptual Progress for the Improvements in the Selectivity and Efficacy of G Protein-Coupled Receptor Therapeutics: An Overview vol.25, pp.1, 2017, https://doi.org/10.4062/biomolther.2016.262
- Time-gated detection of protein-protein interactions with transcriptional readout vol.6, pp.2050-084X, 2017, https://doi.org/10.7554/eLife.30233
- Limited potential of cebranopadol to produce opioid-type physical dependence in rodents pp.13556215, 2017, https://doi.org/10.1111/adb.12550
- Exploring G Protein-Coupled Receptors (GPCRs) Ligand Space via Cheminformatics Approaches: Impact on Rational Drug Design vol.9, pp.1663-9812, 2018, https://doi.org/10.3389/fphar.2018.00128
- Therapeutic Targets for Treatment of Heart Failure: Focus on GRKs and β-Arrestins Affecting βAR Signaling vol.9, pp.1663-9812, 2018, https://doi.org/10.3389/fphar.2018.01336
- GPCR drug discovery: integrating solution NMR data with crystal and cryo-EM structures pp.1474-1784, 2018, https://doi.org/10.1038/nrd.2018.180
- Tissue-specific transcriptome analyses provide new insights into GPCR signalling in adult Schistosoma mansoni vol.14, pp.1, 2018, https://doi.org/10.1371/journal.ppat.1006718
- Application of Nanoparticles for Targeting G Protein-Coupled Receptors vol.19, pp.7, 2018, https://doi.org/10.3390/ijms19072006
- Quinolones Modulate Ghrelin Receptor Signaling: Potential for a Novel Small Molecule Scaffold in the Treatment of Cachexia vol.19, pp.6, 2018, https://doi.org/10.3390/ijms19061605
- β-arrestin-2 in PAR-1-biased signaling has a crucial role in endothelial function via PDGF-β in stroke vol.10, pp.2, 2019, https://doi.org/10.1038/s41419-019-1375-x
- Bioluminescence Resonance Energy Transfer as a Method to Study Protein-Protein Interactions: Application to G Protein Coupled Receptor Biology vol.24, pp.3, 2019, https://doi.org/10.3390/molecules24030537
- FSHR Trans-Activation and Oligomerization vol.9, pp.None, 2017, https://doi.org/10.3389/fendo.2018.00760
- The role and mechanism of β-arrestins in cancer invasion and metastasis (Review) vol.41, pp.2, 2017, https://doi.org/10.3892/ijmm.2017.3288
- Genetic Analysis of Rare Human Variants of Regulators of G Protein Signaling Proteins and Their Role in Human Physiology and Disease vol.70, pp.3, 2017, https://doi.org/10.1124/pr.117.015354
- Biased Ligands of G Protein-Coupled Receptors (GPCRs): Structure-Functional Selectivity Relationships (SFSRs) and Therapeutic Potential vol.61, pp.22, 2017, https://doi.org/10.1021/acs.jmedchem.8b00435
- Universality of fold-encoded localized vibrations in enzymes vol.9, pp.None, 2017, https://doi.org/10.1038/s41598-019-48905-8
- Differential functional selectivity and downstream signaling bias of ghrelin receptor antagonists and inverse agonists vol.33, pp.1, 2019, https://doi.org/10.1096/fj.201800655r
- Allosteric Modulation of Class A GPCRs: Targets, Agents, and Emerging Concepts vol.62, pp.1, 2019, https://doi.org/10.1021/acs.jmedchem.8b00875
- Membrane-Anchored Serine Proteases and Protease-Activated Receptor-2–Mediated Signaling: Co-Conspirators in Cancer Progression vol.79, pp.2, 2017, https://doi.org/10.1158/0008-5472.can-18-1745
- Molecular Basis of Modulating Adenosine Receptors Activities vol.25, pp.7, 2019, https://doi.org/10.2174/1381612825666190304122624
- Biased Receptor Signaling in Drug Discovery vol.71, pp.2, 2017, https://doi.org/10.1124/pr.118.016790
- Potential Utility of Biased GPCR Signaling for Treatment of Psychiatric Disorders vol.20, pp.13, 2019, https://doi.org/10.3390/ijms20133207
- The Complex Signaling Pathways of the Ghrelin Receptor vol.161, pp.4, 2017, https://doi.org/10.1210/endocr/bqaa020
- Novel M 2 ‐selective, G i ‐biased agonists of muscarinic acetylcholine receptors vol.177, pp.9, 2020, https://doi.org/10.1111/bph.14970
- KR-39038, a Novel GRK5 Inhibitor, Attenuates Cardiac Hypertrophy and Improves Cardiac Function in Heart Failure vol.28, pp.5, 2017, https://doi.org/10.4062/biomolther.2020.129
- The Role of G Protein-Coupled Receptors (GPCRs) and Calcium Signaling in Schizophrenia. Focus on GPCRs Activated by Neurotransmitters and Chemokines vol.10, pp.5, 2017, https://doi.org/10.3390/cells10051228
- Discovery of a Biased Allosteric Modulator for Cannabinoid 1 Receptor: Preclinical Anti-Glaucoma Efficacy vol.64, pp.12, 2017, https://doi.org/10.1021/acs.jmedchem.1c00040
- Application of Alanine Scanning to Determination of Amino Acids Essential for Peptide Adsorption at the Solid/Solution Interface and Binding to the Receptor: Surface-Enhanced Raman/Infrared Spectrosco vol.64, pp.12, 2017, https://doi.org/10.1021/acs.jmedchem.1c00397
- Targeting the Angiotensin II Type 1 Receptor in Cerebrovascular Diseases: Biased Signaling Raises New Hopes vol.22, pp.13, 2017, https://doi.org/10.3390/ijms22136738
- Discovery of G Protein-Biased Antagonists against 5-HT7R vol.64, pp.18, 2017, https://doi.org/10.1021/acs.jmedchem.1c01093
- Transcriptome Profiling of Dysregulated GPCRs Reveals Overlapping Patterns across Psychiatric Disorders and Age-Disease Interactions vol.10, pp.11, 2017, https://doi.org/10.3390/cells10112967
- TLR4 biased small molecule modulators vol.228, pp.None, 2017, https://doi.org/10.1016/j.pharmthera.2021.107918