References
- Agresti, J. J., Antipov, E., Abate, A. R., Ahn, K., Rowat, A. C., Baret, J. C., Marquez, M., Klibanov, A. M., Griffiths, A. D. and Weitz, D. A. (2010) Ultrahigh-throughput screening in drop-based microfluidics for directed evolution. Proc. Natl. Acad. Sci. U.S.A. 107, 4004-4009. https://doi.org/10.1073/pnas.0910781107
- Bjarnadottir, T. K., Gloriam, D. E., Hellstrand, S. H., Kristiansson, H., Fredriksson, R. and Schioth, H. B. (2006) Comprehensive repertoire and phylogenetic analysis of the G protein-coupled receptors in human and mouse. Genomics 88, 263-273. https://doi.org/10.1016/j.ygeno.2006.04.001
- Bologna, Z., Teoh, J., Bayoumi, A. S., Tang, Y. and Kim, I. M. (2017) Biased G protein-coupled receptor signaling: new player in modulating physiology and pathology. Biomol. Ther. (Seoul) 25, 12-25. https://doi.org/10.4062/biomolther.2016.165
- Cassel, D. and Selinger, Z. (1976) Catecholamine-stimulated GTPase activity in turkey erythrocyte membranes. Biochim. Biophys. Acta 452, 538-551. https://doi.org/10.1016/0005-2744(76)90206-0
- Chen, Y., Long, H., Wu, Z., Jiang, X. and Ma, L. (2008) EGF transregulates opioid receptors through EGFR-mediated GRK2 phosphorylation and activation. Mol. Biol. Cell 19, 2973-2983. https://doi.org/10.1091/mbc.E07-10-1058
-
Cherezov, V., Rosenbaum, D. M., Hanson, M. A., Rasmussen, S. G., Thian, F. S., Kobilka, T. S., Choi, H. J., Kuhn, P., Weis, W. I., Kobilka, B. K. and Stevens, R. C. (2007) High-resolution crystal structure of an engineered human
${\beta}2$ -adrenergic G-protein-coupled receptor. Science 318, 1258-1265. https://doi.org/10.1126/science.1150577 - Chou, M. M., Hou, W., Johnson, J., Graham, L. K., Lee, M. H., Chen, C. S., Newton, A. C., Schaffhausen, B. S. and Toker, A. (1998) Regulation of protein kinase C zeta by PI 3-kinase and PDK-1. Curr. Biol. 8, 1069-1077. https://doi.org/10.1016/S0960-9822(98)70444-0
- Daub, H., Weiss, F. .U, Wallasch, C. and Ullrich, A. (1996) Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors. Nature 379, 557-560. https://doi.org/10.1038/379557a0
-
Dixon, R. A., Kobilka, B. K., Strader, D. J., Benovic, J. L., Dohlman, H. G., Frielle, T., Bolanowski, M. A., Bennett, C. D., Rands, E., Diehl, R. E., Mumford, R. A., Slater, E. E., Sigal, I. S., Caron, M. G., Lefkowitz, R. J. and Strader, C. D. (1986) Cloning of the gene and cDNA for mammalian
${\beta}$ -adrenergic receptor and homology with rhodopsin. Nature 321, 75-79. https://doi.org/10.1038/321075a0 - Duc, N. M., Kim, H. R. and K. Y. Chung (2017) Recent progress in understanding the conformational mechanism of heterotrimeric G protein activation. Biomol. Ther. (Seoul) 25, 4-11. https://doi.org/10.4062/biomolther.2016.169
- Furlong, M. and Seong, J. Y. (2017) Evolutionary and comparative genomics to drive rational drug design, with particular focus on neuropeptide seven-transmembrane receptors. Biomol. Ther. (Seoul) 25, 57-68. https://doi.org/10.4062/biomolther.2016.199
- Gilman, A. G. (1987) G proteins: transducers of receptor-generated signals. Annu. Rev. Biochem. 56, 615-649. https://doi.org/10.1146/annurev.bi.56.070187.003151
- Lee, S., Chung, Y. H. and Lee, C. (2017) US28, a virally-encoded GPCR as an antiviral target for human cytomegalovirus infection. Biomol. Ther. (Seoul) 25, 69-79. https://doi.org/10.4062/biomolther.2016.208
- Lefkowitz, R. J. (2000) The superfamily of heptahelical receptors. Nat. Cell Biol. 2, E133-E136. https://doi.org/10.1038/35017152
-
Lefkowitz, R. J. and Haber, E. (1971) A fraction of the ventricular myocardium that has the specificity of the cardiac
${\beta}$ -adrenergic receptor. Proc. Natl. Acad. Sci. U.S.A. 68, 1773-1777. https://doi.org/10.1073/pnas.68.8.1773 -
Mangmool, S., Denkaew, T., Parichatikanond, W. and Kurose, H. (2017)
${\beta}$ -adrenergic receptor and insulin resistance in the heart. Biomol. Ther. (Seoul) 25, 44-56. https://doi.org/10.4062/biomolther.2016.128 - Nathans, J. and Hogness, D. S. (1983) Isolation, sequence analysis, and intron-exon arrangement of the gene encoding bovine rhodopsin. Cell 34, 807-814. https://doi.org/10.1016/0092-8674(83)90537-8
- O'Hara, D. S. and Lefkowitz, R. J. (1974) Affinity chromatography of adrenergic receptors and binding proteins. Meth. Enzymol. 34, 695-700.
- Park, S. J. and Im, D. S. (2017) Sphingosine 1-phosphate receptor modulators and drug discovery. Biomol. Ther. (Seoul) 25, 80-90. https://doi.org/10.4062/biomolther.2016.160
-
Reiter, E., Ahn, S., Shukla, A. K. and Lefkowitz, R. J. (2012) Molecular mechanism of
${\beta}$ -arrestin-biased agonism at seven-transmembrane receptors. Annu. Rev. Pharmacol. Toxicol. 52, 179-197. https://doi.org/10.1146/annurev.pharmtox.010909.105800 - Robison, G. A., Butcher, R. W. and Sutherland, E. W. (1967) Adenyl cyclase as an adrenergic receptor. Ann. N. Y. Acad. Sci. 139, 703-723. https://doi.org/10.1111/j.1749-6632.1967.tb41239.x
- Rodbell, M., Birnbaumer, L., Pohl, S. L. and Krans, H. M. (1971) The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. V. An obligatory role of guanylnucleotides in glucagon action. J. Biol. Chem. 246, 1877-1882.
-
Rosenbaum, D. M., Cherezov, V., Hanson, M. A., Rasmussen, S. G., Thian, F. S., Kobilka, T. S., Choi, H. J., Yao, X. J., Weis, W. I., Stevens, R. C. and Kobilka, B. K. (2007) GPCR engineering yields high-resolution structural insights into
${\beta}$ 2-adrenergic receptor function. Science 318, 1266-1273. https://doi.org/10.1126/science.1150609 - Sodhi, A., Montaner, S. and Gutkind, J. S. (2004) Viral hijacking of Gprotein-coupled-receptor signalling networks. Nat. Rev. Mol. Cell Biol. 5, 998-1012. https://doi.org/10.1038/nrm1529
- Stryer, L. (1986) Cyclic GMP cascade of vision. Annu. Rev. Neurosci. 9, 87-119. https://doi.org/10.1146/annurev.ne.09.030186.000511
-
van Biesen, T., Hawes, B. E., Luttrell, D. K., Krueger, K. M., Touhara, K., Porfiri, E., Sakaue, M., Luttrell, L. M. and Lefkowitz, R. J. (1995) Receptor-tyrosine-kinase- and
$G{\beta}{\gamma}$ -mediated MAP kinase activation by a common signalling pathway. Nature 376, 781-784. https://doi.org/10.1038/376781a0 -
Violin, J. D. and Lefkowitz, R. J. (2007)
${\beta}$ -arrestin-biased ligands at seven-transmembrane receptors. Trends Pharmacol. Sci. 28, 416-422. https://doi.org/10.1016/j.tips.2007.06.006 -
Wei, H., Ahn, S., Shenoy, S. K., Karnik, S. S., Hunyady, L., Luttrell, L. M. and Lefkowitz, R. J. (2003) Independent
${\beta}$ -arrestin 2 and G protein-mediated pathways for angiotensin II activation of extracellular signal-regulated kinases 1 and 2. Proc. Natl. Acad. Sci. U.S.A. 100, 10782-10787. https://doi.org/10.1073/pnas.1834556100 -
Weichert, D., Banerjee, A., Hiller, C., Kling, R. C., Hubner, H. and Gmeiner, P. (2015) Molecular determinants of biased agonism at the dopamine
$D_2$ receptor. J. Med. Chem. 58, 2703-2717. https://doi.org/10.1021/jm501889t -
Whalen, E. J., Rajagopal, S. and Lefkowitz, R. J. (2011) Therapeutic potential of
${\beta}$ -arrestin- and G protein-biased agonists. Trends Mol. Med. 17, 126-139. https://doi.org/10.1016/j.molmed.2010.11.004 - Zhang, X. and Kim, K. M. (2017) Multifactorial regulation of G proteincoupled receptor endocytosis. Biomol. Ther. (Seoul) 25, 26-43. https://doi.org/10.4062/biomolther.2016.186
- Zheng, M., Zhang, X., Guo, S., Zhang, X., Min, C., Cheon, S. H., Oak, M. H., Kim, Y. R. and Kim, K. M. (2016) Agonist-induced changes in RalA activities allows the prediction of the endocytosis of G proteincoupled receptors. Biochim. Biophys. Acta 1863, 77-90. https://doi.org/10.1016/j.bbamcr.2015.10.007
Cited by
- Prenatal and early-life diesel exhaust exposure causes autism-like behavioral changes in mice vol.15, pp.1, 2018, https://doi.org/10.1186/s12989-018-0254-4
- Nano-Inspired Technologies for Peptide Delivery vol.21, pp.4, 2017, https://doi.org/10.2174/1389203720666191202112429