DOI QR코드

DOI QR Code

천리안 위성의 기상센서와 해양센서를 활용한 지표면 온도 상세화 기법

Downscaling of Land Surface Temperature by Combining Communication, Ocean and Meteorological Satellite

  • 정재환 (성균관대학교 수자원학과) ;
  • 백종진 (성균관대학교 건축토목공학부) ;
  • 최민하 (성균관대학교 수자원학과)
  • Jeong, Jaehwan (Department of Water Resources, Graduate School of Water Resources, Sungkyunkwan University) ;
  • Baik, Jongjin (School of Civil, Architectural and Environmental System Engineering, Sungkyunkwan University) ;
  • Choi, Minha (Department of Water Resources, Graduate School of Water Resources, Sungkyunkwan University)
  • 투고 : 2016.12.27
  • 심사 : 2017.02.06
  • 발행 : 2017.02.28

초록

위성자료는 수집이 용이할 뿐만 아니라, 지점에서 관측된 자료에 비해 보다 광범위한 현상을 표현함으로써 보다 많은 연구를 활성화하고 발전시키는데 이바지하고 있다. 하지만 한반도와 같이 지형이 복잡하고 균일하지 않은 지역에서는 연구 목적이나 방법에 적절한 공간해상도의 자료를 산정하는 것이 매우 중요하다. 본 연구에서는 정지궤도 위성인 천리안 위성의 GOCI와 MI에서 관측되는 자료를 융합함으로써 4 km에서 500m 까지 상세화하여 고해상도의 지표면 온도 자료를 생산하였다. 이를 12개 지점에서 관측된 ASOS 자료들과의 통계적 분석을 통해 그 활용성을 검증하였다. 그 결과 대부분의 지점에서 오차는 감소하고, 상관도가 증가하는 것을 볼 수 있었으며, 공간 분포 분석에서는 크게 비슷한 경향을 띄고 있으면서도 복잡한 지형을 보다 잘 표현하는 것으로 나타났다. 따라서 본 연구를 통해 상세화 된 한반도의 지표면 온도 자료가 천리안 위성의 활용 범위를 보다 확장하고 다양한 연구의 기반이 될 수 있을 것으로 기대된다.

Remotely sensed satellite data is easier to collect and better to represent local phenomenon than a site data. So they can contribute to the activation and development of many research. However, it is necessary to improve spatial resolution suitable for application in the area of complex topography such as the Korean Peninsula. In this study, finer resolution Land Surface Temperature (LST) was downscaled from 4 km to 500 m by combining GOCI with MI data of Communication, Ocean and Meteorological Satellite (COMS). It was then statistically analyzed with LST data observed from the ASOS sites to validate its applicability. As a result, it was found that the errors decreased and correlation increased at the most validation sites, also the spatial distribution analysis showed a similar tendency but it expressed the complicated terrain better. This study suggests possibility of expanding the application range of COMS by producing finer resolution data available in various studies.

키워드

참고문헌

  1. Baek, JJ, and Choi, MH (2012). Availability of land surface temperature from the COMS in the Korean Peninsula. J. of Korea Water Resources Association, 45(8), pp. 755-765. [Korean Literature] https://doi.org/10.3741/JKWRA.2012.45.8.755
  2. Baek, JJ, Sur, CY, and Choi, MH (2013a). Assessment of outgoing longwave radiation using COMS : Cheongmi and Sulma catchments. J. of Korea Water Resources Association, 46(5), pp. 465-476. [Korean Literature] https://doi.org/10.3741/JKWRA.2013.46.5.465
  3. Baek, JJ., Byun, KH, Kim, DE and Choi, MH (2013b). Assessment of solar insolation from COMS: Sulma and Cheongmi watersheds. Korean J. of Remote Sensing, 29(1), pp. 137-150. [Korean Literature] https://doi.org/10.7780/kjrs.2013.29.1.13
  4. Baik, JJ, and Choi, MH (2015). Evaluation of geostationary satellite (COMS) based Priestley-Taylor evapotranspiration, Agricultural Water Management, 159, pp. 77-91. https://doi.org/10.1016/j.agwat.2015.05.017
  5. Baik, JJ, Park, JM, Ryu, DR and Choi, MH (2016). Geospatial blending to improve spatial mapping of precipitation with high spatial resolution by merging satellite based and ground-based data. Hydrological Processes, 30, pp. 2789-2803, DOI: 10.1002/hyp.10786.
  6. Byun, KH, Liaqat, UW, and Choi, MH (2014). Dual-model approaches for evapotranspiration analyses over homoand heterogeneous land surface conditions. Agricultural and Forest Meteorology, 197, pp. 169-187. https://doi.org/10.1016/j.agrformet.2014.07.001
  7. Cho, AR and Suh, MS (2013). Evaluation of land surface temperature operationally retrieved from Korean geostationary satellite (COMS) data, Remote Sensing, 5, pp. 3951-3970. https://doi.org/10.3390/rs5083951
  8. Hong, KO, Suh, MS and Kang, JH (2009). "Improvement of COMS land surface temperature retrieval algorithm." The Korean Society of Remote Sensing, 25(6), pp. 507-515. [Korean Literature] https://doi.org/10.7780/kjrs.2009.25.6.507
  9. Hwang, SW (2014). Assessing the performance of CMIP5 GCMs for various climatic elements and indicators over the Southeast US. J. of Korea Water Resources Association, 47(1), pp. 1039-1050. [Korean Literature] https://doi.org/10.3741/JKWRA.2014.47.11.1039
  10. Kang, JH, Suh, MS and Kwak, CH (2009). Classification of land cover over the Korean Peninsula using MODIS data, Korean Meteorological Society, 19(2), pp. 169-182. [Korean Literature]
  11. Kim, DE, Baek, JJ, Jung, SW and Choi, MH (2013). Net radiation estimation using flux tower data and integrated hydrological model: for the Seolmacheon and Chungmichen watersheds, J. of Korea Water Resources Association, 46(3), pp. 301-314. [Korean Literature] https://doi.org/10.3741/JKWRA.2013.46.3.301
  12. Lee, YG, Jung, CG, Lee, JW, and Kim, SJ (2016). A study on establishment of appropriate observation time for estimation of daily land surface temperature using COMS in Korea Peninsula, J. of the Korean Society of Agricultural Engineers, 58(4), pp. 37-46. [Korean Literature] https://doi.org/10.5389/KSAE.2016.58.4.037
  13. Maeda, E.E (2014). Downscaling MODIS LST in the East African mountains using elevation gradient and land-cover information. International J. of Remote Sensing. 35(9), pp. 3094-3108. https://doi.org/10.1080/01431161.2014.903442
  14. Park, JK, Kim, BS, Oh, SY and Park, JH (2013). Applicability of vegetation indices from Terra MODIS and COMS GOCI imageries, J. of the Korean Society of Agricultural Engineers, 55(6), pp. 47-55. [Korean Literature] https://doi.org/10.5389/KSAE.2013.55.6.047
  15. Park, JM, Baik, JJ, Kim, SJ and Choi, MH (2014). Application of normalized vegetation index for estimating hydrological factors in the Korea Peninsula from COMS. J. of Korea Water Resources Association, 47(10), pp. 935-943. [Korean Literature] https://doi.org/10.3741/JKWRA.2014.47.10.935
  16. Rochdi, N and Fernandes, R (2008). Intercalibration of vegetation indices from Landsat ETM+ and MODIS data for LAI mapping. Geomatics Canada.
  17. Sun, D and Kafatos, M (2007). Note on the NDVI-LST relationship and the use of temperature-related drought indices over North America. Geophysical Research Letter, 34, L24406. https://doi.org/10.1029/2007GL031485
  18. Schmugge, TJ, Kustas, WP, Ritchie, JC, Jackson, TJ and Rango, A (2002). Remote sensing in hydrology, Advances in Water Resources, 25, pp. 1367-1385. https://doi.org/10.1016/S0309-1708(02)00065-9
  19. Taylor, KE (2001). Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res.: Atmos., 106, pp. 7183-7192. https://doi.org/10.1029/2000JD900719
  20. Yue, W, Xu, J, Tan, W and Xu, L (2016). The relationship between land surface temperature and NDVI with remote sensing: application to Shanghai Landsat 7 ETM+ data. International J. of Remote Sensing, 28, pp. 3205-3226.