DOI QR코드

DOI QR Code

격자기반 강우-유출-유사 모형의 유사량 산정에 관한 적용성 평가

Applicability Evaluation to Grid-based Rainfall-Runoff-Sediment Model for Sediment Discharge Estimation

  • 최현구 (경북대학교 방재연구소) ;
  • 박준형 (국립재난안전연구원 R&D기획평가센터) ;
  • 한건연 (경북대학교 건설환경에너지공학부)
  • Choi, Hyun Gu (Institute for Disaster Prevention, Kyungpook National University) ;
  • Park, Jun Hyung (R&D Innovation Center, National Disatster Management Research Institute) ;
  • Han, Kun Yeun (School of Architectural, Civil, Environmental and Energy Engineering, Kyungpook National University)
  • 투고 : 2017.01.12
  • 심사 : 2017.02.06
  • 발행 : 2017.02.28

초록

유사의 침식 이송 퇴적으로 인해 발생할 수 있는 문제를 최소화하기 위해 하천에서의 정기적인 유사량 자료의 획득이 필수이다. 하지만 현재 국내에서의 유사량 측정 계획으로는 유사량 추정에 어려움이 있어 이를 대체하기 위해 경험식이나 수치모형을 활용하고 있다. 따라서 본 논문에서는 유역에서의 유사량 산정과 자료의 연속성 확보를 위해 국내에서 개발된 격자기반 강우-유출-유사 모형인 K-DRUM 모형을 적용하였다. 17개의 중권역에 대한 유량과 유사량을 산정하고 실측자료와 비교를 통해 모형의 적용성을 검토하였다. 정량적인 평가를 위해 NSE, PBIAS, RSR 등을 기준항목으로 사용하였으며, 유량에 대한 모의결과는 강우의 경향을 잘 반영하며 높은 통계값을 나타내었다. 유사량의 경우 유역의 토양침식과정을 물리적으로 잘 반영하였으며, 실측자료를 이용하여 보정을 수행하였을 때 그 유역에서 연속적인 유사량 자료를 산정하는데 적용성이 우수한 것으로 나타났다.

It is essential to obtain periodic sediment discharge data in a river in order to minimize problems that may arise from the erosion, transport, and deposition of sediment. However, it is difficult to estimate sediment discharge by the sediment discharge measurement plan in Korea at present, and empirical fomulas or numerical models are used to replace them. This paper has applied the K-DRUM model, a grid-based rainfall-runoff-sediment model, to estimate sediment discharge and ensure the continuity of the data in the watershed. Discharge and sediment load in 17 watersheds were estimated and the applicability of the model was analyzed through comparisons with measured data. For quantitative evaluation, NSE, PBIAS and RSR items were used, and discharge results reflected the tendency of rainfall and showed high statistical value. In case of sediment discharge, the soil erosion process of the watershed is physically well reflected. When the calibration was performed using the measure data, the applicability seems to be excellent in estimating the continuous sediment discharge data in the real watershed.

키워드

참고문헌

  1. Abaci, O. and Papanicolaou, A. (2008). Evaluating the Performance of the Water Erosion Prediction Project (WEPP) Model for Larger Watersheds, World Environmental and Water Resources Congress 2008, pp. 1-10.
  2. Apip, Sayama, T., Tachikawa, Y. and Takara, K. (2008). Lumping of a Physically-based Distributed Model for Sediment Runoff Prediction in a Catchment Scale, J. of Hydraulic Engineering, JSCE, 52, pp. 43-48. https://doi.org/10.2208/prohe.52.43
  3. Beven, K. (1979). On the generalized kinematic routing method, J. of Water Resources Research, 15, pp. 1238-1242. https://doi.org/10.1029/WR015i005p01238
  4. Chaplot, V. (2005). Impact of DEM mesh size and soil map scale on SWAT runoff, sediment, and $NO_3$-N loads predictions. J. of Hydrology, 312(1), pp. 207-222. https://doi.org/10.1016/j.jhydrol.2005.02.017
  5. Choi, JW, Hyun, GW, Lee, JW, Shin, DS, Kim, KS, Park, YS, Kim, JG and Lim, KJ (2009). Evaluation of Sediment Yield Prediction and Estimation of Sediment Yield under Various Slope Scenarios at Jawoon-ri using WEPP Watershed Model, J. of Korean Society on Water Quality, 25(3), pp. 441-451. [Korean Literature]
  6. Hayashi, S., Murakami, S., Watanabe, M. and Xu, B. H. (2004). HSPF Simulation of Runoff and Sediment Loads in the Upper Changjiang River Basin, China, J. of Environmental Engineering, 130(7), pp. 801-815. https://doi.org/10.1061/(ASCE)0733-9372(2004)130:7(801)
  7. Hong, JS (2009). Effects of Small Watershed Division on Sediment Runoff Prediction in Mountainous Watershed Using WEPP and SEMMA, Master Dissertation, Kangnung National University. [Korean Literature]
  8. Keum, JH (2002). A Comparative Study of the Distributed and Lumped Models for the Estimation of Sediment Yield from a Small Watershed, Master Dissertation, Korea University. [Korean Literature]
  9. Kim, BK, Kim, SD, Lee, ET and Kim, HS (2007). Methodology for Estimating Rages of SWAT Model Parameters : Application to Imha Lake Inflow and Suspended Sediments, J. of Korean Society of Civil Engineers, 27(6B), pp. 661-668. [Korean Literature]
  10. Kim, SW (1995). A Study on the Temporal Change of Soil Loss of Kyungan River Basin with Geographic Information System, Master Dissertation, Seoul National University. [Korean Literature]
  11. Kim, CG and Kim, NW (2008). Investigation on the Relationship of Rainfall-Runoff-Sediment Yields for the Soyang Dam Upstream Watershed, Proceedings of the Korea Water Resources Association Conference 2008, Korea Water Resources Association, pp. 2095-2099. [Korean Literature]
  12. K-water (2012). K-DRUM User Manual.
  13. Lee, GH, Yu, WS, Jang, CL and Jung, KS (2010). Analysis on Spatiotemporal Variability of Erosion and Deposition Using a Distributed Hydrologic Model, J. of Korea Water Resources Association, 43(11), pp. 995-1009. [Korean Literature] https://doi.org/10.3741/JKWRA.2010.43.11.995
  14. Lee, GS, Kim, YR, Ye, L and Lee, ER (2009). The Analysis of Suspended Sediment Load of Donghyang and Cheoncheon Basin using GIS-based SWAT Model, J. of Korean Association of Geographic Information Studies, 12(2), pp. 82-98. [Korean Literature]
  15. Mein, R. G. and Larson, C. L. (1973). Modeling infiltration During a Steady Rain, J. of Water Resources Research, 9(2), pp. 384-394. https://doi.org/10.1029/WR009i002p00384
  16. Ministry of Land, Infrastructure and Transport (2014), Hydrological Annual Report in Korea. [Korean Literature]
  17. Ministry of Land, Transport and Maritime Affairs (2011), Hydrological Investigation Report. [Korean Literature]
  18. Morgan, R. P. C., Quinton, J. N., Smith, R. E., Govers, G., Poesen, J. W. A., Auerswald, K., Chisci, G., Torri, D. and Styczen, M. E. (1998). The European Soil Erosion Model(EUROSEM): Dynamic Approach for Predicting Sediment Transport from Fields and Small Catchments, Earth Surface Processes and Landforms, 23, pp. 527-544. https://doi.org/10.1002/(SICI)1096-9837(199806)23:6<527::AID-ESP868>3.0.CO;2-5
  19. Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D. and Veith, T. L. (2007). Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations, Transactions of the ASABE, 50(3), pp. 885-900. https://doi.org/10.13031/2013.23153
  20. Park, YS, Kim, JG, Park, JH, Jeon, JH, Choi, DH, Kim, TD, Choi, JD, Ahn, JH, Kim, KS and Lim, KJ (2007). Evaluation of SWAT Applicability to Simulation of Sediment Behaviors at the Imha-Dam Watershed, J. of Korean Society on Water Quality, 23(4), pp. 467-473. [Korean Literature]
  21. Park, JH and Hur, YT (2008). Development of Kinematic Wave-based Distributed Model for Flood Discharge Analysis, J. of Korea Water Resources Association, 41(5), pp. 455-462. [Korean Literature] https://doi.org/10.3741/JKWRA.2008.41.5.455
  22. Yu, WS (2010). A Study on Rainfall-Sediment-Runoff Estimation with Consideration to Parameter Uncertainty, Master Dissertation, Chungnam National University. [Korean Literature]
  23. Yuan, Y., Locke, M. A. and Bingner, R. L. (2008). Annualized Agricultural Non-Point Source model application for Mississippi Delta Beasley Lake watershed conservation practices assessment, J. of Soil and Water Conservation Society, 63(6), pp. 542-551. https://doi.org/10.2489/jswc.63.6.542