References
- Snapshot of global photovoltaic markets, Report IEA PVPS T1-29:2016
- Reich, N. H., Mueller, B., Armbruster, A., Sark, W. G., Kiefer, K., and Reise, C., Performance ratio revisited: is PR> 90% realistic?. Progress in Photovoltaics: Research and Applications, Vol. 20, pp. 717-726, 2012. https://doi.org/10.1002/pip.1219
- Oh, W. W. and Chan, S. I., The Performance Loss by the Soiling of Photovoltaic Modules, Journal of the Korean Solar Energy Society (in Korean), Vol. 35, pp. 63-71, 2015. https://doi.org/10.7836/kses.2015.35.2.063
- So, J. H., Jung, Y. S., Yu, G. J., Choi, J. Y., and Choi, J. H., Performance results and analysis of 3 kW grid-connected PV systems. Renewable Energy, Vol. 32, pp. 1858-1872, 2007. https://doi.org/10.1016/j.renene.2006.10.003
- Kymakis, E., Kalykakis, S., and Papazoglou, T. M., Performance analysis of a grid connected photovoltaic park on the island of Crete. Energy Conversion and Management, Vol. 50, pp. 433-438, 2009. https://doi.org/10.1016/j.enconman.2008.12.009
- Ayompe, L. M., Duffy, A., McCormack, S. J., and Conlon, M., Measured performance of a 1.72 kW rooftop grid connected photovoltaic system in Ireland. Energy conversion and management,Vol. 52, pp. 816-825, 2011. https://doi.org/10.1016/j.enconman.2010.08.007
- Messina, S., Rosales, I. P. H., Duran, C. E. S., Quinones, J. J., and Nair, P. K., Comparative study of system performance of two 2.4 kW grid-connected PV installations in Tepic-Nayarit and Temixco-Morelos in Mexico. Energy Procedia, Vol. 57, pp. 161-167, 2014. https://doi.org/10.1016/j.egypro.2014.10.020
- Okello, D., van Dyk, E. E., and Vorster, F. J., Analysis of measured and simulated performance data of a 3.2 kWp grid-connected PV system in Port Elizabeth, South Africa. Energy Conversion and Management, Vol. 100, pp. 10-15, 2015. https://doi.org/10.1016/j.enconman.2015.04.064
- Silva Fonseca, J. G., Oozeki, T., Takashima, T., Koshimizu, G., Uchida, Y., and Ogimoto, K., Use of support vector regression and numerically predicted cloudiness to forecast power output of a photovoltaic power plant in Kitakyushu, Japan. Progress in photovoltaics: Research and applications, Vol. 20, pp. 874-882, 2012. https://doi.org/10.1002/pip.1152
- Chen, C., Duan, S., Cai, T., and Liu, B., Online 24-h solar power forecasting based on weather type classification using artificial neural network. Solar Energy, Vol. 85, pp. 2856-2870, 2011. https://doi.org/10.1016/j.solener.2011.08.027
- Shi, J., Lee, W. J., Liu, Y., Yang, Y., and Wang, P., Forecasting power output of photovoltaic systems based on weather classification and support vector machines. IEEE Transactions on Industry Applications, Vol. 48, pp. 1064-1069, 2012. https://doi.org/10.1109/TIA.2012.2190816
- Kim, K. D., The Development of the Short-Term Predict Model for Solar Power Generation. Journal of the Korean Solar Energy Society, Vol. 33, pp. 62-69, 2013. https://doi.org/10.7836/kses.2013.33.6.062
- Song, J. J., Jeong, Y. S., and Lee, S. H., Analysis of prediction model for solar power generation. Journal of Digital Convergence, Vol. 12, pp. 243-248, 2014.
- Wang, G., Su, Y., and Shu, L., One-day-ahead daily power forecasting of photovoltaic systems based on partial functional linear regression models. Renewable Energy, Vol. 96, pp. 469-478, 2016. https://doi.org/10.1016/j.renene.2016.04.089
- Lee, K. H. and Kim W. J., Forecasting of 24_hours Ahead Photovoltaic Power Output Using Support Vector Regression, Journal of KIIT. Vol. 14, pp. 175-183, 2016.
- Choi, W. K., Oh, M. S., and Shin, W. C., The Simplified Pre-Estimation Model Development of a BIPV Generation Rate by the District Division. Journal of the Korean Solar Energy Society, Vol. 36, pp. 19-29, 2016.
- James, G., Witten, D., Hastie, T., and Tibshirani, R., An introduction to statistical learning, Vol. 6, New York: springer, 2013.
Cited by
- Measurement and validation of polysilicon photovoltaic module degradation rates over five years of field exposure in Oman vol.9, pp.6, 2017, https://doi.org/10.3934/energy.2021055