DOI QR코드

DOI QR Code

Performance Analysis of Photovoltaic Power System in Saudi Arabia

사우디아라비아 태양광 발전 시스템의 성능 분석

  • 오원욱 (전자부품연구원 융복합전자소재연구센터) ;
  • 강소연 (전자부품연구원 융복합전자소재연구센터) ;
  • 천성일 (전자부품연구원 융복합전자소재연구센터)
  • Received : 2017.01.13
  • Accepted : 2017.02.08
  • Published : 2017.02.28

Abstract

We have analyzed the performance of 58 kWp photovoltaic (PV) power systems installed in Jeddah, Saudi Arabia. Performance ratio (PR) of 3 PV systems with 3 desert-type PV modules using monitoring data for 1 year showed 85.5% on average. Annual degradation rate of 5 individual modules achieved 0.26%, the regression model using monitoring data for the specified interval of one year showed 0.22%. Root mean square error (RMSE) of 6 big data analysis models for power output prediction in May 2016 was analyzed 2.94% using a support vector regression model.

Keywords

References

  1. Snapshot of global photovoltaic markets, Report IEA PVPS T1-29:2016
  2. Reich, N. H., Mueller, B., Armbruster, A., Sark, W. G., Kiefer, K., and Reise, C., Performance ratio revisited: is PR> 90% realistic?. Progress in Photovoltaics: Research and Applications, Vol. 20, pp. 717-726, 2012. https://doi.org/10.1002/pip.1219
  3. Oh, W. W. and Chan, S. I., The Performance Loss by the Soiling of Photovoltaic Modules, Journal of the Korean Solar Energy Society (in Korean), Vol. 35, pp. 63-71, 2015. https://doi.org/10.7836/kses.2015.35.2.063
  4. So, J. H., Jung, Y. S., Yu, G. J., Choi, J. Y., and Choi, J. H., Performance results and analysis of 3 kW grid-connected PV systems. Renewable Energy, Vol. 32, pp. 1858-1872, 2007. https://doi.org/10.1016/j.renene.2006.10.003
  5. Kymakis, E., Kalykakis, S., and Papazoglou, T. M., Performance analysis of a grid connected photovoltaic park on the island of Crete. Energy Conversion and Management, Vol. 50, pp. 433-438, 2009. https://doi.org/10.1016/j.enconman.2008.12.009
  6. Ayompe, L. M., Duffy, A., McCormack, S. J., and Conlon, M., Measured performance of a 1.72 kW rooftop grid connected photovoltaic system in Ireland. Energy conversion and management,Vol. 52, pp. 816-825, 2011. https://doi.org/10.1016/j.enconman.2010.08.007
  7. Messina, S., Rosales, I. P. H., Duran, C. E. S., Quinones, J. J., and Nair, P. K., Comparative study of system performance of two 2.4 kW grid-connected PV installations in Tepic-Nayarit and Temixco-Morelos in Mexico. Energy Procedia, Vol. 57, pp. 161-167, 2014. https://doi.org/10.1016/j.egypro.2014.10.020
  8. Okello, D., van Dyk, E. E., and Vorster, F. J., Analysis of measured and simulated performance data of a 3.2 kWp grid-connected PV system in Port Elizabeth, South Africa. Energy Conversion and Management, Vol. 100, pp. 10-15, 2015. https://doi.org/10.1016/j.enconman.2015.04.064
  9. Silva Fonseca, J. G., Oozeki, T., Takashima, T., Koshimizu, G., Uchida, Y., and Ogimoto, K., Use of support vector regression and numerically predicted cloudiness to forecast power output of a photovoltaic power plant in Kitakyushu, Japan. Progress in photovoltaics: Research and applications, Vol. 20, pp. 874-882, 2012. https://doi.org/10.1002/pip.1152
  10. Chen, C., Duan, S., Cai, T., and Liu, B., Online 24-h solar power forecasting based on weather type classification using artificial neural network. Solar Energy, Vol. 85, pp. 2856-2870, 2011. https://doi.org/10.1016/j.solener.2011.08.027
  11. Shi, J., Lee, W. J., Liu, Y., Yang, Y., and Wang, P., Forecasting power output of photovoltaic systems based on weather classification and support vector machines. IEEE Transactions on Industry Applications, Vol. 48, pp. 1064-1069, 2012. https://doi.org/10.1109/TIA.2012.2190816
  12. Kim, K. D., The Development of the Short-Term Predict Model for Solar Power Generation. Journal of the Korean Solar Energy Society, Vol. 33, pp. 62-69, 2013. https://doi.org/10.7836/kses.2013.33.6.062
  13. Song, J. J., Jeong, Y. S., and Lee, S. H., Analysis of prediction model for solar power generation. Journal of Digital Convergence, Vol. 12, pp. 243-248, 2014.
  14. Wang, G., Su, Y., and Shu, L., One-day-ahead daily power forecasting of photovoltaic systems based on partial functional linear regression models. Renewable Energy, Vol. 96, pp. 469-478, 2016. https://doi.org/10.1016/j.renene.2016.04.089
  15. Lee, K. H. and Kim W. J., Forecasting of 24_hours Ahead Photovoltaic Power Output Using Support Vector Regression, Journal of KIIT. Vol. 14, pp. 175-183, 2016.
  16. Choi, W. K., Oh, M. S., and Shin, W. C., The Simplified Pre-Estimation Model Development of a BIPV Generation Rate by the District Division. Journal of the Korean Solar Energy Society, Vol. 36, pp. 19-29, 2016.
  17. James, G., Witten, D., Hastie, T., and Tibshirani, R., An introduction to statistical learning, Vol. 6, New York: springer, 2013.

Cited by

  1. Measurement and validation of polysilicon photovoltaic module degradation rates over five years of field exposure in Oman vol.9, pp.6, 2017, https://doi.org/10.3934/energy.2021055