• Title/Summary/Keyword: 소일링

Search Result 8, Processing Time 0.027 seconds

Excavation Behavior of an Earth Retaining Wall Supported by Large Diameter Soil-cement Blocks (대구경 소일-시멘트 교반체로 보강한 토류벽의 굴착 시 거동 분석)

  • Kim, YoungSeok;Choo, Jinhyun;Cho, Yong Sang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2C
    • /
    • pp.65-74
    • /
    • 2011
  • This paper presents an analysis of excavation behavior of an earth retaining wall supported by large diameter soil-cement blocks at a field trial site. The concept and design philosophy of the large soil-cement block reinforcement are described first. The wall behavior during sequential excavations up to 9.8 m is analyzed based on the measured lateral wall movements and earth pressures. The settlements of adjacent ground are examined by field measurements and inverse numerical analysis. The results indicate that, when the lengths of the soil-cement blocks were over 0.45 H (H: wall height), the displacements and the earth pressures induced by the excavations were similar to those supported by conventional methods such as soil nailing.

The Performance Loss by the Soiling of Photovoltaic Modules (태양전지 모듈의 소일링에 의한 성능 저하)

  • Oh, Wonwook;Chan, Sung-Il
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.2
    • /
    • pp.63-71
    • /
    • 2015
  • Soiling is the accumulation of dirt on photovoltaic (PV) modules and can reduce the performance of the PV power plant depending on the site location. Nevertheless, the reason which can not be the great interest to researchers of PV reliability is the phenomenon of performance loss caused by external environmental factors, not the internal degradation of the PV module. In this paper, we provide the phenomenon, history, research overview and mitigation method in order to help understanding of the soiling.

Short-term Scheduling Optimization for Subassembly Line in Ship Production Using Simulated Annealing (시뮬레이티드 어닐링을 활용한 조선 소조립 라인 소일정계획 최적화)

  • Hwang, In-Hyuck;Noh, Jac-Kyou;Lee, Kwang-Kook;Shin, Jon-Gye
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.1
    • /
    • pp.73-82
    • /
    • 2010
  • Productivity improvement is considered as one of hot potato topics in international shipyards by the increasing amount of orders. In order to improve productivity of lines, shipbuilders have been researching and developing new work method, process automation, advanced planning and scheduling and so on. An optimization approach was accomplished on short-term scheduling of subassembly lines in this research. The problem of subassembly line scheduling turned out to be a non-deterministic polynomial time problem with regard to SKID pattern’s sequence and worker assignment to each station. The problem was applied by simulated annealing algorithm, one of meta-heuristic methods. The algorithm was aimed to avoid local minimum value by changing results with probability function. The optimization result was compared with discrete-event simulation's to propose what pros and cons were. This paper will help planners work on scheduling and decision-making to complete their task by evaluation.

An Experimental Study on the Application of End-Expanded Soil Nailing Method (선단확장식 소일네일링 공법의 적용성에 관한 실험적 연구)

  • Lee, Sang-Eun;Jang, Yun-Ho;Moon, Chang-Yeul;Jeong, Gyo-Cheol;Park, Young-Sun
    • The Journal of Engineering Geology
    • /
    • v.17 no.4
    • /
    • pp.525-534
    • /
    • 2007
  • The peculiarity of end-expanded soil nailing method(EESNM) is in fixing the wedge-type steel body spreaded by collars and grouting its surroundings by cement milk within soils, after extending hole bottom over drilling hole diameter with top drill bit. The present study was done to establish the effect of this method. Laboratory model test were carried out to investigate the behavior characteristics with the performance of the pull-out test and failure experiment, after preparing soil test box having 1,300mm length, width 1,000mm, and height 1,100mm, and the same experimental condition was set up to compare with the general soil nailing method(GSNM). The pull-out force of about 23 percentage was increased, and the horizontal displacements 1.2 from 9.1 percentage in soil-nailed wall decreased in EESNM compare with GSNM. The axial force acting on nail increased considerably at load level over 7 ton in EESNM and 5 ton in GSNM. The predicted failure line from the maxima analyzed by axial tensile strain located at long distance from soil-nailed wall in EESNM. The EESNM demonstrated the superiority of reinforcement effect in comparison with GSNM from the results above mentioned.

Performance Analysis of Photovoltaic Power System in Saudi Arabia (사우디아라비아 태양광 발전 시스템의 성능 분석)

  • Oh, Wonwook;Kang, Soyeon;Chan, Sung-Il
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.1
    • /
    • pp.81-90
    • /
    • 2017
  • We have analyzed the performance of 58 kWp photovoltaic (PV) power systems installed in Jeddah, Saudi Arabia. Performance ratio (PR) of 3 PV systems with 3 desert-type PV modules using monitoring data for 1 year showed 85.5% on average. Annual degradation rate of 5 individual modules achieved 0.26%, the regression model using monitoring data for the specified interval of one year showed 0.22%. Root mean square error (RMSE) of 6 big data analysis models for power output prediction in May 2016 was analyzed 2.94% using a support vector regression model.

Use of Sleeve Baluns to Improve the Radiation Pattern of a Broadband Biconical Antenna (슬리브 발룬을 활용한 광대역 바이코니컬 안테나의 방사패턴 개선 연구)

  • Soily, Srabonty;Kim, Dong-Woo;Oh, Soon-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.4
    • /
    • pp.563-570
    • /
    • 2022
  • We designed a biconical antenna with sleeve baluns that exhibited an improved radiation pattern from 3-40 GHz. In the antenna, the edges of the ring of the upper cone are blended to a cylinder. Sleeve baluns operating at specific frequencies are connected to the antenna to minimize leakage currents on the surface of the feeding coaxial cable. The radiation pattern was improved with the sleeve baluns, and the angular 3-dB beamwidth ranged from 67.1-101.1° over 3-40 GHz, which is much broader than the 21-99° of the conventional antenna.

A Study on Friction Anisotropy between Sand and Surface Asperities of Plate Using Modified Direct Shear Test (수정된 직접 전단 시험기를 이용한 모래와 표면 돌출부를 갖는 플레이트 사이의 마찰 이방성에 대한 연구)

  • Lee, Seung-Hun;Chong, Song-Hun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.2
    • /
    • pp.29-38
    • /
    • 2022
  • The friction anisotropy of shear resistance can be selectively used in geo-structures. For example, larger axially loaded deep foundation, soil nails, and tiebacks increase load carrying capacity due to induced large shear resistance while pile penetration and soil sampling produce minimal shear resistance. Previous studies confirmed direction-dependent shear resistance induced by interface between soil and surface asperity of plate inspired by geometrical shape of snake scale. The aim of this paper is to quantitatively evaluate interface friction angle with different surface asperities. Using the modified direct shear test, a total of 51 cases, which sand are prepared at the relative density of 40%, are conduced including 9 plates, two shear direction (shearing direction against the height of surface asperity is increased or decreased during shearing test), and three initial vertical stress (100 kPa, 200 kPa, 300 kPa). Experimental results show that shear stress is increased with higher height of surface asperity, shorter length of surface asperity, and the shearing direction that the height of surface asperity increases. Also, interface friction angle is decreased with larger surface asperity ratio, and shearing direction with increasing height of surface asperity produces larger interface friction angle regardless of the surface asperity ratio.