DOI QR코드

DOI QR Code

열화학 기상 증착법에 의한 비정질 SiOx 나노와이어의 성장

Growth of Amorphous SiOx Nanowires by Thermal Chemical Vapor Deposition Method

  • 김기출 (목원대학교 신소재화학공학과)
  • Kim, Ki-Chul (Department of Advanced Chemical Engineering, Mokwon University)
  • 투고 : 2017.10.10
  • 심사 : 2017.10.20
  • 발행 : 2017.10.31

초록

나노구조를 갖는 물질들은 나노구조물이 갖는 고유의 체적 대비 높은 표면적 비와 양자 갇힘 효과에 기인하는 독특한 전기적, 광학적, 광전기적, 자기적 특성으로 인하여 많은 주목을 받아왔다. 열화학 기상 증착 공정은 나노 구조물의 성장과정에서 다양한 구조를 갖는 나노소재의 합성 능력 때문에 더욱 주목을 받아왔다. 본 연구에서는 두 영역 열화학 기상 증착법과 소스 물질 $TiO_2$ 파우더를 이용하여 VLS 공정으로 Si\$SiO_2$(300 nm)\Pt(5~40 nm) 기판 위에 실리콘 옥사이드 나노와이어를 성장시켰다. 성장된 실리콘 옥사이드 나노와이어의 형상과 결정학적 특성을 전계방출 주사전자현미경과 투과전자현미경으로 분석하였다. 분석결과, 성장된 실리콘 옥사이드 나노와이어의 형상인 지름과 길이는 촉매 박막의 두께에 의존하여 다른 모양을 나타내었다. 또한 성장된 실리콘 옥사이드 나노와이어는 비정질 상을 갖는 것으로 분석되었다.

Nanostructured materials have received attention due to their unique electronic, optical, optoelectrical, and magnetic properties as a results of their large surface-to-volume ratio and quantum confinement effects. Thermal chemical vapor deposition process has attracted much attention due to the synthesis capability of various structured nanomaterials during the growth of nanostructures. In this study, silicon oxide nanowires were grown on Si\$SiO_2$(300 nm)\Pt(5~40 nm) substrates by two-zone thermal chemical vapor deposition with the source material $TiO_2$ powder via vapor-liquid-solid process. The morphology and crystallographic properties of the grown silicon oxide nanowires were characterized by field-emission scanning electron microscope and transmission electron microscope. As results of analysis, the morphology, diameter and length, of the grown silicon oxide nanowires are depend on the thickness of the catalyst films. The grown silicon oxide nanowires exhibit amorphous phase.

키워드

참고문헌

  1. S. Iijima. (1991). Helical microtubules of graphitic carbon. Nature, 354(6348), 56. DOI : 10.1038/354056a0
  2. Z. W. Pan, Z. R. Dai & Z. L. Wang. (2001). Nanobelts of semiconducting oxides. Science, 291(5510), 1947-1949. DOI : 10.1126/science.1058120
  3. M. H. Huang et al. (2001). Room-temperature ultraviolet nanowire nanolasers. Science, 292(5523), 1897-1899. DOI : 10.1126/science.1060367
  4. D. Gao. R. He, C. Carraro, R. T. Howe, P. Yang & R. Maboudian. (2005). Selective growth of Si nanowire arrays via galvanic displacement processes in water-in-oil microemulsions. Journal of the American Chemical Society, 127(13), 4574-4575. DOI : 10.1021/ja043645y
  5. J. Wu, Q. Gu, B. S. Guiton, N. P. de Leon, L. Ouyang & H. Park. (2006). Strain-induced self organization of metal-insulator domains in single-crystalline VO2 nanobeams. Nano letters, 6(10), 2313-2317. DOI : 10.1021/nl061831r
  6. C. H. Wang, A. S. W. Wong & G. W. Ho. (2007). Facile solution route to vertically aligned, selective growth of ZnO nanostructure arrays. Langmuir, 23(24), 11960-11963. DOI : 10.1021/la702296q
  7. S. H. Lee, D. H. Lee, W. J. Lee & S. O. Kim. (2011). Tailored assembly of carbon nanotubes and graphene. Advanced Functional Materials, 21(8), 1338-1354. DOI : 10.1002/adfm.201190021
  8. F. Yang, D. K. Taggart & R. M. Penner. (2010). Joule heating a palladium nanowire sensor for accelerated response and recovery to hydrogen gas. Small, 6(13), 1422-1429. DOI : 10.1002/smll.201000145
  9. B. Kumar, D. H. Lee, S. H. Kim, B. Yang, S. Maeng & S. W. Kim. (2010). General route to single-crystalline SnO nanosheets on arbitrary substrates. The Journal of Physical Chemistry C, 114(25), 11050-11055. DOI : 10.1021/jp101682v
  10. K. C. Kim, D. H. Lee & S. Maeng. (2012). Synthesis of novel pure SnO nanostructures by thermal evaporation. Materials Letters, 86, 119-121. DOI : 10.1016/j.matlet.2012.07.019
  11. H. K. Park et al. (2006). Vertically Well-Aligned ZnO Nanowires on c-$Al_2O_3$ and GaN Substrates by Au Catalyst. ETRI journal, 28(6), 787-789. DOI : 10.4218/etrij.06.0206.0138
  12. J. H. Shin, J. Y. Song, Y. H. Kim & H. M. Park. (2010). Low temperature and self-catalytic growth of tetragonal SnO nanobranch. Materials Letters, 64(9), 1120-1122. DOI : 10.1016/j.matlet.2010.02.028
  13. J. M. Wu, H. C. Shih, W. T. Wu, Y. K. Tseng & I. C. Chen. (2005). Thermal evaporation growth and the luminescence property of $TiO_2$ nanowires. Journal of crystal Growth, 281(2), 384-390. DOI : 10.1016/j.jcrysgro.2005.04.018
  14. Y. Shi, Q. Hu, H. Araki, H. Suzuki, H. Gao, W. Yang & T. Noda.(2005). Long Si nanowires with millimeter-scale length by modified thermal evaporation from Si powder. Applied Physics A: Materials Science & Processing, 80(8), 1733-1736. DOI : 10.1007/s00339-003-2469-x
  15. A. M. Morales & C. M. Lieber. (1998). A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science, 279(5348), 208-211. DOI : 10.1126/science.279.5348.208
  16. Z. W. Pan, Z. R. Dai, L. Xu, S. T. Lee & Z. L. Wang. (2001). Temperature-controlled growth of silicon-based nanostructures by thermal evaporation of SiO powders. The Journal of Physical Chemistry B, 105(13), 2507-2514. DOI : 10.1021/jp004253q
  17. Y. S. Lai, J. L. Wang, S. C. Liou & C. H. Tu. (2008). Tailoring of amorphous SiOx nanowires grown by rapid thermal annealing. Chemical Physics Letters, 453(1), 97-100. DOI : 10.1016/j.cplett.2008.01.026