DOI QR코드

DOI QR Code

Development and implementation of statistical prediction procedure for field penetration index using ridge regression with best subset selection

최상부분집합이 고려된 능형회귀를 적용한 현장관입지수에 대한 통계적 예측기법 개발 및 적용

  • 이항로 (인하대학교 토목공학과) ;
  • 송기일 (인하대학교 토목공학과) ;
  • 김경열 (한국전력 전력연구원 차세대송변전연구)
  • Received : 2017.09.11
  • Accepted : 2017.10.10
  • Published : 2017.11.30

Abstract

The use of shield TBM is gradually increasing due to the urbanization of social infrastructures. Reliable estimation of advance rate is very important for accurate construction period and cost. For this purpose, it is required to develop the prediction model of advance rate that can consider the ground properties reasonably. Based on the database collected from field, statistical prediction procedure for field penetration index (FPI) was modularized in this study to calculate penetration rate of shield TBM. As output parameter, FPI was selected and various systems were included in this module such as, procedure of eliminating abnormal dataset, preprocessing of dataset and ridge regression with best subset selection. And it was finally validated by using field dataset.

사회기반시설의 지중화로 인하여 쉴드 TBM 적용이 점차 확대되고 있는 추세다. 합리적인 공기기간 및 공사비 산정을 위해 쉴드 TBM의 실굴진율을 정확하게 예측하는 것은 매우 중요한 사안이라 할 수 있다. 이러한 이유로 국내에서는 지반의 물성을 합리적으로 반영한 쉴드 TBM의 실굴진율 예측모델이 필요한 상황이다. 본 연구는 쉴드 TBM의 순굴진율 산정을 위해 현장 데이터베이스를 기반으로 현장관입지수의 통계적 예측절차를 모듈화 하였다. 출력인자로 현장관입지수를 선정하였고, 비정상치 제거 및 전처리 그리고 최상 부분집합선택이 고려된 능형회귀를 적용한 예측시스템을 모듈에 포함하였다. 또한 현장 굴진 데이터를 활용하여 예측모델의 적용성을 확인하였다.

Keywords

References

  1. Akaike, H. (1974), "A new look at the statistical model identification", IEEE Transactions on Automatic Control, Vol. 19, No. 6, pp. 716-723. https://doi.org/10.1109/TAC.1974.1100705
  2. Bieniawski, Z.T. (1973), "Engineering classification of jointed rock masses", Civil Engineer in South Africa, Vol. 15, No. 12, pp. 335-343.
  3. Bruland, A. (1998), "Hard rock tunnel boring: Advance Rate and Cutter Wear", Doctoral Thesis, Norwegian University of Science and Technology (NTNU), Trondheim, Norway, pp. 6-26.
  4. Cousineau, D., Chartier, S. (2010), "Outliers detection and treatment: a review", International Journal of Psychological Research, Vol. 3, No. 1, pp. 58-67. https://doi.org/10.21500/20112084.844
  5. Chae, J.S., Lee, D.H., Lee, S. (2005), "A calculation of shield TBM advance rate in the shield tunnel", Journal of The Korea Institute for Structural Maintenance and Inspection, Vol. 9, No. 1, pp. 35-41.
  6. Chang, S.H., Choi, S.W., Bae, G.J., Jeon, S.W. (2007), "A parametric study of rock properties and mechanical cutting conditions for deriving an optimum design model of a TBM cutterhead equipped with disc cutters", Journal of The Korean Society of Civil Engineers, Vol. 27, No. 1C, pp. 87-98.
  7. Delisio, A., Zhao, J., Einstein, H.H. (2013), "Analysis and prediction of TBM performance in blocky rock conditions at the Lotschberg Base Tunnel", Tunnelling and Underground Space Technology, Vol. 33, pp. 131-142. https://doi.org/10.1016/j.tust.2012.06.015
  8. Farmer, I.W., Glossop, N.H. (1980), "Mechanics of disc cutter penetration", Tunnels and Tunnelling, Vol. 12, No. 6, pp. 22-25.
  9. Gong, Q.M., Zhao, J., Jiang, Y.S. (2007), "In situ TBM penetration tests and rock mass boreability analysis in hard rock tunnels", Tunnelling and Underground Space Technology, Vol. 22, No. 3, pp. 303-316. https://doi.org/10.1016/j.tust.2006.07.003
  10. Gong, Q.M., Zhao J. (2009), "Development of a rock mass characteristics model for TBM penetration rate prediction", International Journal of Rock Mechanics and Mining Sciences, Vol. 46, No. 1, pp. 8-18. https://doi.org/10.1016/j.ijrmms.2008.03.003
  11. Hamidi, J.K., Shahriar, K., Rezai, B., Rostami, J. (2010), "Performance prediction of hard rok TBM using Rock Mass Rating system", Tunnelling and Underground Space Technology, Vol. 25, No. 4, pp. 333-345. https://doi.org/10.1016/j.tust.2010.01.008
  12. Hamilton, W.H., Dollinger, G.L. (1979), "Optimizing tunnel boring machine and cutter design for greater boreability", Rapid Excavation and Tunneling Conference, Proceedings, Vol. 1, pp. 280-296.
  13. Hassanpour, J., Rostami, J., Khamehchiyan, M., Bruland, A. (2009), "Developing new equations for TBM performance prediction in carbonateargillaceous rocks: a case history of Nowsood Water conveyance tunnel", Geomechanics and Geoengineering, Vol. 4, No. 4, pp. 287-297. https://doi.org/10.1080/17486020903174303
  14. Hoerl, A.E., Kennard, R.W. (1970), "Ridge regression: Biased estimation for nonorthogonal problems", Technometrics, Vol. 12, No. 1, pp. 55-67. https://doi.org/10.1080/00401706.1970.10488634
  15. Hughes, H.M. (1986), "The relative cuttability of coal-measures stone", Mining Science and Technology, Vol. 3, No. 2, pp. 95-109. https://doi.org/10.1016/S0167-9031(86)90250-1
  16. James, G., Witten, D., Hastie, T., Tibshirani, R. (2013), An Introduction to Statistical Learning: With Applications in R, Springer, New York, pp. 205-227.
  17. Mahdevari, S., Shahriar, K., Yagiz, S., Shirazi, M.A. (2014). "A support vector regression model for predicting tunnel boring machine penetration rates", International Journal of Rock Mechanics and Mining Sciences, Vol. 72, pp. 214-229. https://doi.org/10.1016/j.ijrmms.2014.09.012
  18. Mallows, C.L. (1973), "Some comments on Cp", Technometrics, Vol. 15, No. 4, pp. 661-675.
  19. Myers, R.H. (1990). Classical and Modern Regression with Applications, PWS-KENT Publishing Company, Boston, pp. 222-227, 251-258.
  20. Rahmatullah Imon, A.H.M. (2005), "Identifying multiple influential observations in linear regression", Journal of Applied statistics, Vol. 32, No. 9, pp. 929-946. https://doi.org/10.1080/02664760500163599
  21. Sanner, M.F. (1999), "Python: a programming language for software integration and development", J Mol Graph Model, Vol. 17, No. 1, pp. 57-61.
  22. Welsch, R.E. (1980), "Regression sensitivity analysis and bounded-influence estimation", Evaluation of Econometric Models, Academic Press, pp. 153-167.