DOI QR코드

DOI QR Code

Lonchocarpine Increases Nrf2/ARE-Mediated Antioxidant Enzyme Expression by Modulating AMPK and MAPK Signaling in Brain Astrocytes

  • Jeong, Yeon-Hui (Department of Molecular Medicine, Tissue Injury Defense Research Center, Ewha Womans University, School of Medicine) ;
  • Park, Jin-Sun (Department of Molecular Medicine, Tissue Injury Defense Research Center, Ewha Womans University, School of Medicine) ;
  • Kim, Dong-Hyun (Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University) ;
  • Kim, Hee-Sun (Department of Molecular Medicine, Tissue Injury Defense Research Center, Ewha Womans University, School of Medicine)
  • Received : 2016.06.28
  • Accepted : 2016.09.08
  • Published : 2016.11.01

Abstract

Lonchocarpine is a phenylpropanoid compound isolated from Abrus precatorius that has anti-bacterial, anti-inflammatory, antiproliferative, and antiepileptic activities. In the present study, we investigated the antioxidant effects of lonchocarpine in brain glial cells and analyzed its molecular mechanisms. We found that lonchocarpine suppressed reactive oxygen species (ROS) production and cell death in hydrogen peroxide-treated primary astrocytes. In addition, lonchocarpine increased the expression of anti-oxidant enzymes, such as heme oxygenase-1 (HO-1), NAD(P)H:quinone oxidoreductase 1 (NQO1), and manganese superoxide dismutase (MnSOD), which are all under the control of Nrf2/antioxidant response element (ARE) signaling. Further, mechanistic studies showed that lonchocarpine increases the nuclear translocation and DNA binding of Nrf2 to ARE as well as ARE-mediated transcriptional activities. Moreover, lonchocarpine increased the phosphorylation of AMP-activated protein kinase (AMPK) and three types of mitogen-activated protein kinases (MAPKs). By treating astrocytes with each signaling pathway-specific inhibitor, AMPK, c-jun N-terminal protein kinase (JNK), and p38 MAPK were identified to be involved in lonchocarpine-induced HO-1 expression and ARE-mediated transcriptional activities. Therefore, lonchocarpine may be a potential therapeutic agent for neurode-generative diseases that are associated with oxidative stress.

Keywords

References

  1. Barnham, K. J., Masters, C. L. and Bush, A. I. (2004) Neurodegenerative diseases and oxidative stress. Nat. Rev. Drug Discov. 3, 205-214. https://doi.org/10.1038/nrd1330
  2. Calkins, M. J., Johnson, D. A., Townsend, J. A., Vargas, M. R., Dowell, J. A., Williamson, T. P., Kraft, A. D., Lee, J. M., Li, J. and Johnson, J. A. (2009) The Nrf2/ARE pathway as a potential therapeutic target in neurodengenerative disease. Antioxid. Redox Signal. 11, 497-508. https://doi.org/10.1089/ars.2008.2242
  3. Carling, D., Thornton, C., Woods, A. and Sanders, M. J. (2012) AMP-activated protein kinase: new regulation, new roles? Biochem. J. 445, 11-27. https://doi.org/10.1042/BJ20120546
  4. Chen, K. and Maines, M. D. (2000) Nitric oxide induces heme oxygenase-1 via mitogen-activated protein kinases ERK and p38. Cell. Mol. Biol. 46, 609-617.
  5. de Vries, H. E., Witte, M., Hondius, D., Rozemuller, A. J., Drukarch, B., Hoozemans, J. and van Horssen, J. (2008) Nrf2-induced antioxidant protection: a promising target to counteract ROS-mediated damage in neurodegenerative disease? Free Rad. Biol. Med. 45, 1375-1383. https://doi.org/10.1016/j.freeradbiomed.2008.09.001
  6. Drukarch, B., Schepens, E., Stoof, J. C., Langeveld, C. H. and Van Muiswinkel, F. L. (1998) Astrocyte-enhanced neuronal survival is mediated by scavenging of extracellular reactive oxygen species. Free Rad. Biol. Med. 25, 217-220. https://doi.org/10.1016/S0891-5849(98)00050-1
  7. Elbirt, K. K., Whitmarsh, A. J., Davis, R. J., and Bonkosky, H. L. (1998) Mechanism of sodium arsenite-mediated induction of heme oxygenase-1 in hepatoma cells. Role of mitogen-activated protein kinases. J. Biol. Chem. 273, 8922-8931. https://doi.org/10.1074/jbc.273.15.8922
  8. Finsterwald, C., Magistretti, P. J. and Lengacher, S. (2015) Astrocytes: New targets for the treatment of neurodegenerative diseases. Curr. Pharm. Des. 21, 3570-3581. https://doi.org/10.2174/1381612821666150710144502
  9. Fontenele, J. B., Leal, L. K., Felix, F. H., Silveira, E. R. and Viana, G. S. (2009) Studies on the anti-oedematogenic properties of a fraction rich in lonchocarpin and derricin isolated from Lonchocarpus sericeus. Nat. Prod. Res. 23, 1677-1688. https://doi.org/10.1080/14786410802181745
  10. Georgewill, O. A. and Georgewill, U. O. (2009) Evaluation of the anti-inflammatory activity of extract of Abrus precatorious. East. J. Med. 14, 23-25.
  11. Gul, M. Z., Ahmad, F., Kondapi, A. K., Qureshi, I. A. and Ghazi, I. A. (2013) Antioxidant and antiproliferative activities of Abrus precatorius leaf extracts--an in vitro study. BMC Complement. Altern. Med. 13, 53. https://doi.org/10.1186/1472-6882-13-53
  12. Jaiswal, A. K. (2004) Nrf2 signaling in coordinated activation of antioxidant gene expression. Free Rad. Biol. Med. 36, 1199-1207. https://doi.org/10.1016/j.freeradbiomed.2004.02.074
  13. Johnson, D. A. and Johnson, J. A. (2015) Nrf2- a therapeutic target for the treatment of neurodegenerative diseases. Free Rad. Biol. Med. 88, 253-267. https://doi.org/10.1016/j.freeradbiomed.2015.07.147
  14. Lee, E. J., Ko, H. M., Jeong, Y. H., Park, E. M. and Kim, H. S. (2015) $\beta$-Lapachone suppresses neuroinflammation by modulating the expression of cytokines and matrix metalloproteinases in activated microglia. J. Neuroinflammation 12, 133. https://doi.org/10.1186/s12974-015-0355-z
  15. Li, J., Jiang, Z., Li, X., Hou, Y., Liu, F., Li, N., Liu, X., Yang, L. and Chen, G. (2015) Natural therapeutic agents for neurodegenerative diseases from a traditional herbal medicine Pongamia pinnata (L.) Pierre. Bioorg. Med. Chem. Lett. 25, 53-58. https://doi.org/10.1016/j.bmcl.2014.11.015
  16. Lima, N. M., Andrade, J. I., Lima, K. C., dos Santos, F. N., Barison, A., Salome, K. S., Matsuura, T. and Nunez, C. V. (2013) Chemical profile and biological activities of Deguelia duckeana A.M.G. Azevedo (Fabaceae). Nat. Prod. Res. 27, 425-432. https://doi.org/10.1080/14786419.2012.733387
  17. Liu, X. M., Peyton, K. J., Shebib, A. R., Wang, H., Korthuis, R. J. and Durante, W. (2011) Activation of AMPK stimulates heme oxygenase-1 gene expression and human endothelial cell survival. Am. J. Physiol. Heart Circ. Physiol. 300, H84-93. https://doi.org/10.1152/ajpheart.00749.2010
  18. Martinez de Morentin, P. B., Gonzalez, C. R. and Lopez, M. (2010) AMP-activated protein kinase: 'a cup of tea' against cholesterol-induced neurotoxicity. J. Pathol. 222, 329-334. https://doi.org/10.1002/path.2778
  19. Mo, C., Wang, L., Zhang, J., Numazawa, S., Tang, H., Tang, X., Han, X., Li, J., Yang, M., Wang, Z., Wei, D. and Xiao, H. (2014) The crosstalk between Nrf2 and AMPK signal pathways is important for the anti-inflammatory effect of berberine in LPS-stimulated macrophages and endotoxin-shocked mice. Antioxid. Redox Signal. 20, 574-588. https://doi.org/10.1089/ars.2012.5116
  20. Niture, S. K., Kaspar, J. W., Shen, J. and Jaiswal, A. K. (2010) Nrf2 signaling and cell survival. Toxicol. App. Pharmacol. 244, 37-42. https://doi.org/10.1016/j.taap.2009.06.009
  21. Park, J. S., Jung, J. S., Jeong, Y. H., Hyun, J. W., Le, T. K., Kim, D. H., Choi, E. C. and Kim, H. S. (2011) Antioxidant mechanism of isoflavone metabolites in hydrogen peroxide-stimulated rat primary astrocytes: critical role of hemeoxygenase-1 and NQO1 expression. J. Neurochem. 119, 909-919. https://doi.org/10.1111/j.1471-4159.2011.07395.x
  22. Park, J. S., Park, E. M., Kim, D. H., Jung, K., Jung, J. S., Lee, E. J., Hyun, J. W., Kang, J. L. and Kim, H. S. (2009) Anti-inflammatory mechanism of ginseng saponins in activated microglia. J. Neuroimmunol. 209, 40-49. https://doi.org/10.1016/j.jneuroim.2009.01.020
  23. Premanand, R. and Ganesh, T. (2010) Neuroprotective effects of Abrus precatorius Linn. aerial extract on hypoxic neurotoxicity induced rats. Int. J. Chem. Pharmac. Sci. 1, 9-15.
  24. Reyes-Chilpa, R., Baggio, C. H., Alavez-Solano, D., Estrada-Muniz, E., Kauffman, F. C., Sanchez, R. I. and Mesia-Vela, S. (2006) Inhibition of gastric H+,K+-ATPase activity by flavonoids, coumarins and xanthones isolated from Mexican medicinal plants. J. Ethnopharmacol. 105, 167-172. https://doi.org/10.1016/j.jep.2005.10.014
  25. Ronnett, G. V., Ramamurthy, S., Kleman, A. M., Landree, L. E. and Aja, S. (2009) AMPK in the brain: its roles in energy balance and neuroprotection. J. Neurochem. 109 Suppl 1, 17-23. https://doi.org/10.1111/j.1471-4159.2009.05916.x
  26. Ryter, S. W., Alam, J., Choi, A. M. (2006) Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol. Rev. 86, 583-650. https://doi.org/10.1152/physrev.00011.2005
  27. Ryter, S. W., Xi, S., Hartsfield, C. L., and Choi A.M. (2002) Mitogen activated protein kinase (MAPK) pathway regulates heme oxygenase-1 gene expression by hypoxia in vascular cells. Antioxid. Redox. Signal. 4, 587-592. https://doi.org/10.1089/15230860260220085
  28. Sofroniew, M. V. and Vinters, H. V. (2010) Astrocytes: biology and pathology. Acta. Neuropathol. 119, 7-35. https://doi.org/10.1007/s00401-009-0619-8
  29. Syapin, P. (2008) Regulation of haeme oxygenase-1 for treatment of neuroinflammation and brain disorders. Brit. J. Pharmacol. 155, 623-640.
  30. Vargas, M. R., Johnson, D. A., Sirkis, D. W., Messing, A. and Johnson, J. A. (2008) Nrf2 in astrocytes protects against neurodegeneration in mouse models of familial amyotrophic lateral sclerosis. J. Neurosci. 28, 13574-13581. https://doi.org/10.1523/JNEUROSCI.4099-08.2008
  31. Vargas, M. R. and Johnson, J. A. (2009) The Nrf2-ARE cytoprotective pathway in astrocytes. Expert. Rev. Mol. Med. 11, e17. https://doi.org/10.1017/S1462399409001094
  32. Vari, R., D'Archivio, M., Filesi, C., Carotenuto, S., Scazzocchio, B., Santangelo, C., Giovannini, C. and Masella, R. (2011) Protocatechuic acid induces antioxidant/detoxifying enzyme expression through JNK-mediated Nrf2 activation in murine macrophages. J. Nutr. Biochem. 22, 409-417. https://doi.org/10.1016/j.jnutbio.2010.03.008
  33. Vingtdeux, V., Giliberto, L., Zhao, H., Chandakkar, P., Wu, Q., Simon, J. E., Janle, E. M., Lobo, J., Ferruzzi, M. G., Davies, P. and Marambaud, P. (2010) AMP-activated protein kinase signaling activation by resveratrol modulates amyloid-beta peptide metabolism. J. Biol. Chem. 285, 9100-9113. https://doi.org/10.1074/jbc.M109.060061
  34. Xu, C., Yuan, X., Pan, Z., Shen, G., Kim, J. H., Yu, S., Khor, T. O., Li, W., Ma, J. and Kong, A. N. (2006) Mechanism of action of isothiocyanates: the induction of ARE-regulated genes is associated with activation of ERK and JNK and the phosphorylation and nuclear translocation of Nrf2. Mol. Cancer Ther. 5, 1918-1926. https://doi.org/10.1158/1535-7163.MCT-05-0497
  35. Zang, M., Zuccollo, A., Hou, X., Nagata, D., Walsh, K., Herscovitz, H., Brecher, P., Ruderman, N. B. and Cohen, R. A. (2004) AMP-activated protein kinase is required for the lipid-lowering effect of metformin in insulin-resistant human HepG2 cells. J. Biol. Chem. 279, 47898-47905. https://doi.org/10.1074/jbc.M408149200
  36. Zimmermann, K., Baldinger, J., Mayerhofer, B., Atanasov, A. G., Dirsch, V. M. and Heiss, E. H. (2015) Activated AMPK boosts the Nrf2/HO-1 signaling axis-A role for the unfolded protein response. Free Rad. Biol. Med. 88, 417-426. https://doi.org/10.1016/j.freeradbiomed.2015.03.030

Cited by

  1. Low-current & high-frequency electrical stunning increased oxidative stress, lipid peroxidation, and gene transcription of the mitogen-activated protein kinase/nuclear factor-erythroid 2-related factor 2/antioxidant responsive element (MAPK/Nrf2/ARE) signaling pathway in breast muscle of broilers vol.242, 2018, https://doi.org/10.1016/j.foodchem.2017.09.079
  2. Anti-inflammatory mechanism of lonchocarpine in LPS- or poly(I:C)-induced neuroinflammation vol.119, 2017, https://doi.org/10.1016/j.phrs.2017.02.027
  3. Collaborative Power of Nrf2 and PPARγ Activators against Metabolic and Drug-Induced Oxidative Injury vol.2017, 2017, https://doi.org/10.1155/2017/1378175
  4. 3-Bromo-4,5-dihydroxybenzaldehyde Enhances the Level of Reduced Glutathione via the Nrf2-Mediated Pathway in Human Keratinocytes vol.15, pp.9, 2017, https://doi.org/10.3390/md15090291
  5. Sphingosylphosphorylcholine Induces Thrombospondin-1 Secretion in MCF10A Cells via ERK2 vol.25, pp.6, 2017, https://doi.org/10.4062/biomolther.2016.228
  6. Gas stunning with CO2 affected meat color, lipid peroxidation, oxidative stress, and gene expression of mitogen-activated protein kinases, glutathione S-transferases, and Cu/Zn-superoxide dismutase in the skeletal muscles of broilers vol.9, pp.1, 2018, https://doi.org/10.1186/s40104-018-0252-2
  7. Role of Carbon Monoxide in Neurovascular Repair Processing vol.26, pp.2, 2018, https://doi.org/10.4062/biomolther.2017.144
  8. Pectin Alleviates High Fat (Lard) Diet-Induced Nonalcoholic Fatty Liver Disease in Mice: Possible Role of Short-Chain Fatty Acids and Gut Microbiota Regulated by Pectin vol.66, pp.30, 2018, https://doi.org/10.1021/acs.jafc.8b02979
  9. Anti-neuroinflammatory Effects of 12-Dehydrogingerdione in LPS-Activated Microglia through Inhibiting Akt/IKK/NF-κB Pathway and Activating Nrf-2/HO-1 Pathway vol.27, pp.1, 2016, https://doi.org/10.4062/biomolther.2018.104
  10. The Nrf2/HO-1 Axis as Targets for Flavanones: Neuroprotection by Pinocembrin, Naringenin, and Eriodictyol vol.2019, pp.None, 2016, https://doi.org/10.1155/2019/4724920
  11. Astragaloside IV and ferulic acid synergistically promote neurite outgrowth through Nrf2 activation vol.180, pp.None, 2016, https://doi.org/10.1016/j.mad.2019.04.002
  12. Alleviated Oxidative Damage by Taraxacum officinale through the Induction of Nrf2-MAPK/PI3K Mediated HO-1 Activation in Murine Macrophages RAW 264.7 Cell Line vol.9, pp.7, 2016, https://doi.org/10.3390/biom9070288
  13. Ellagic acid supports neuron by regulating astroglia Nrf2 vol.66, pp.5, 2016, https://doi.org/10.1002/bab.1791
  14. Induction of HO-1 by 5, 8-Dihydroxy-4′,7-Dimethoxyflavone via Activation of ROS/p38 MAPK/Nrf2 Attenuates Thrombin-Induced Connective Tissue Growth Factor Expression in Human Cardiac Fibroblasts vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/1080168
  15. Endothelial Dysfunction in Diabetic Retinopathy vol.11, pp.None, 2020, https://doi.org/10.3389/fendo.2020.00591
  16. Evaluation of pre‐slaughter low‐current/high‐frequency electrical stunning on lipid oxidative stability, antioxidant enzyme activity and gene expression of mitogen‐activated pr vol.55, pp.3, 2016, https://doi.org/10.1111/ijfs.14402
  17. Oridonin attenuates carrageenan-induced pleurisy via activation of the KEAP-1/Nrf2 pathway and inhibition of the TXNIP/NLRP3 and NF-κB pathway in mice vol.28, pp.2, 2016, https://doi.org/10.1007/s10787-019-00644-y
  18. Evaluation of Anti-inflammatory Nutraceuticals in LPS-induced Mouse Neuroinflammation Model: An Update vol.18, pp.7, 2016, https://doi.org/10.2174/1570159x18666200114125628
  19. Physiological Concentration of H2O2 Supports Dopamine Neuronal Survival via Activation of Nrf2 Signaling in Glial Cells vol.41, pp.1, 2016, https://doi.org/10.1007/s10571-020-00844-z
  20. Determination of chemical structure and anti-Trypanosoma cruzi activity of extracts from the roots of Lonchocarpus cultratus (Vell.) A.M.G. Azevedo & H.C. Lima vol.28, pp.1, 2016, https://doi.org/10.1016/j.sjbs.2020.08.036
  21. AICAR decreases acute lung injury by phosphorylating AMPK and upregulating heme oxygenase-1 vol.58, pp.6, 2016, https://doi.org/10.1183/13993003.03694-2020