DOI QR코드

DOI QR Code

3-Deoxysappanchalcone Promotes Proliferation of Human Hair Follicle Dermal Papilla Cells and Hair Growth in C57BL/6 Mice by Modulating WNT/β-Catenin and STAT Signaling

  • Kim, Young Eun (Cosmecutical R&D Center, HP&C, Seowon University) ;
  • Choi, Hyung Chul (Cosmecutical R&D Center, HP&C, Seowon University) ;
  • Lee, In-Chul (Department of Cosmetic Science & Engineering, Seowon University) ;
  • Yuk, Dong Yeon (Cosmecutical R&D Center, HP&C, Seowon University) ;
  • Lee, Hyosung (Department of Pharmaceutical Science & Engineering, Seowon University) ;
  • Choi, Bu Young (Department of Pharmaceutical Science & Engineering, Seowon University)
  • Received : 2016.08.16
  • Accepted : 2016.09.22
  • Published : 2016.11.01

Abstract

3-Deoxysappanchalcone (3-DSC) has been reported to possess anti-allergic, antiviral, anti-inflammatory and antioxidant activities. In the present study, we investigated the effects of 3-DSC on the proliferation of human hair follicle dermal papilla cells (HDPCs) and mouse hair growth in vivo. A real-time cell analyzer system, luciferase assay, Western blot and real-time polymerase chain reaction (PCR) were employed to measure the biochemical changes occurring in HDPCs in response to 3-DSC treatment. The effect of 3-DSC on hair growth in C57BL/6 mice was also examined. 3-DSC promoted the proliferation of HDPCs, similar to Tofacitinib, an inhibitor of janus-activated kinase (JAK). 3-DSC promoted phosphorylation of ${\beta}$-catenin and transcriptional activation of the T-cell factor. In addition, 3-DSC potentiated interleukin-6 (IL-6)-induced phosphorylation and subsequent transactivation of signal transducer and activator of transcription-3 (STAT3), thereby increasing the expression of cyclin-dependent kinase-4 (Cdk4), fibroblast growth factor (FGF) and vascular endothelial growth factor (VEGF). On the contrary, 3-DSC attenuated STAT6 mRNA expression and IL4-induced STAT6 phosphorylation in HDPCs. Finally, we observed that topical application of 3-DSC promoted the anagen phase of hair growth in C57BL/6 mice. 3-DSC stimulates hair growth possibly by inducing proliferation of follicular dermal papilla cells via modulation of $WNT/{\beta}$-catenin and STAT signaling.

Keywords

References

  1. Andl, T., Reddy, S. T., Gaddapara, T. and Millar, S. E. (2002) WNT signals are required for the initiation of hair follicle development. Dev. Cell 2, 643-653. https://doi.org/10.1016/S1534-5807(02)00167-3
  2. Botchkarev, V. A. and Kishimoto, J. (2003) Molecular control of epithelial-mesenchymal interactions during hair follicle cycling. J. Investig. Dermatol. Symp. Proc. 8, 46-55.
  3. Cotsarelis, G. (1997) The hair follicle: dying for attention. Am. J. Pathol. 151, 1505-1509.
  4. Cotsarelis, G. and Millar, S. E. (2001) Towards a molecular understanding of hair loss and its treatment. Trends Mol. Med. 7, 293-301. https://doi.org/10.1016/S1471-4914(01)02027-5
  5. Cotsarelis, G., Sun, T. T. and Lavker, R. M. (1990) Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61, 1329-1337. https://doi.org/10.1016/0092-8674(90)90696-C
  6. Doles, J., Storer, M., Cozzuto, L., Roma, G. and Keyes, W. M. (2012) Age-associated inflammation inhibits epidermal stem cell function. Genes Dev. 26, 2144-2153. https://doi.org/10.1101/gad.192294.112
  7. Festa, E., Fretz, J., Berry, R., Schmidt, B., Rodeheffer, M., Horowitz, M. and Horsley, V. (2011) Adipocyte lineage cells contribute to the skin stem cell niche to drive hair cycling. Cell 146, 761-771. https://doi.org/10.1016/j.cell.2011.07.019
  8. Gat, U., DasGupta, R., Degenstein, L. and Fuchs, E. (1998) De Novo hair follicle morphogenesis and hair tumors in mice expressing a truncated $\beta$-catenin in skin. Cell 95, 605-614. https://doi.org/10.1016/S0092-8674(00)81631-1
  9. Goldstein, J., Fletcher, S., Roth, E., Wu, C., Chun, A. and Horsley, V. (2014) Calcineurin/Nfatc1 signaling links skin stem cell quiescence to hormonal signaling during pregnancy and lactation. Genes Dev. 28, 983-994. https://doi.org/10.1101/gad.236554.113
  10. Hardy, M. H. (1992) The secret life of the hair follicle. Trends Genet. 8, 55-61. https://doi.org/10.1016/0168-9525(92)90350-D
  11. Harel, S., Higgins, C. A., Cerise, J. E., Dai, Z., Chen, J. C., Clynes, R. and Christiano, A. M. (2015) Pharmacologic inhibition of JAK-STAT signaling promotes hair growth. Sci. Adv. 1, e1500973. https://doi.org/10.1126/sciadv.1500973
  12. Huelsken, J., Vogel, R., Erdmann, B., Cotsarelis, G. and Birchmeier, W. (2001) $\beta$-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell 105, 533-545. https://doi.org/10.1016/S0092-8674(01)00336-1
  13. Jahoda, C. A. and Christiano, A. M. (2011) Niche crosstalk: intercellular signals at the hair follicle. Cell 146, 678-681. https://doi.org/10.1016/j.cell.2011.08.020
  14. Kang, B. M., Shin, S. H., Kwack, M. H., Shin, H., Oh, J. W., Kim, J., Moon, C., Moon, C., Kim, J. C., Kim, M. K. and Sung, Y. K. (2010) Erythropoietin promotes hair shaft growth in cultured human hair follicles and modulates hair growth in mice. J. Dermatol. Sci. 59, 86-90. https://doi.org/10.1016/j.jdermsci.2010.04.015
  15. Ke, N., Wang, X., Xu, X. and Abassi, Y. A. (2011) The xCELLigence system for real-time and label-free monitoring of cell viability. Methods Mol. Biol. 740, 33-43. https://doi.org/10.1007/978-1-61779-108-6_6
  16. Kim, J. H., Choo, Y. Y., Tae, N., Min, B. S. and Lee, J. H. (2014) The anti-inflammatory effect of 3-deoxysappanchalcone is mediated by inducing heme oxygenase-1 via activating the AKT/mTOR pathway in murine macrophages. Int. Immunopharmacol. 22, 420-426. https://doi.org/10.1016/j.intimp.2014.07.025
  17. Kishimoto, J., Burgeson, R. E. and Morgan, B. A. (2000) Wnt signaling maintains the hair-inducing activity of the dermal papilla. Genes Dev. 14, 1181-1185.
  18. Kitagawa, T., Matsuda, K., Inui, S., Takenaka, H., Katoh, N., Itami, S., Kishimoto, S. and Kawata, M. (2009) Keratinocyte growth inhibition through the modification of Wnt signaling by androgen in balding dermal papilla cells. J. Clin. Endocrinol. Metab. 94, 1288-1294. https://doi.org/10.1210/jc.2008-1053
  19. Kotanides, H. and Reich, N. C. (1996) Interleukin-4-induced STAT6 recognizes and activates a target site in the promoter of the interleukin-4 receptor gene. J. Biol. Chem. 271, 25555-25561. https://doi.org/10.1074/jbc.271.41.25555
  20. Lin, K. K., Chudova, D., Hatfield, G. W., Smyth, P. and Andersen, B. (2004) Identification of hair cycle-associated genes from time-course gene expression profile data by using replicate variance. Proc. Natl. Acad. Sci. U.S.A. 101, 15955-15960. https://doi.org/10.1073/pnas.0407114101
  21. Liu, A. L., Shu, S. H., Qin, H. L., Lee, S. M., Wang, Y. T. and Du, G. H. (2009) In vitro anti-influenza viral activities of constituents from Caesalpinia sappan. Planta Med. 75, 337-339. https://doi.org/10.1055/s-0028-1112208
  22. Millar, S. E., Willert, K., Salinas, P. C., Roelink, H., Nusse, R., Sussman, D. J. and Barsh, G. S. (1999) WNT signaling in the control of hair growth and structure. Dev. Biol. 207, 133-149. https://doi.org/10.1006/dbio.1998.9140
  23. Oshima, H., Rochat, A., Kedzia, C., Kobayashi, K. and Barrandon, Y. (2001) Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell 104, 233-245. https://doi.org/10.1016/S0092-8674(01)00208-2
  24. Paus, R. and Cotsarelis, G. (1999) The biology of hair follicles. N. Engl. J. Med. 341, 491-497. https://doi.org/10.1056/NEJM199908123410706
  25. Paus, R. and Foitzik, K. (2004) In search of the "hair cycle clock": aguided tour. Differentiation 72, 489-511. https://doi.org/10.1111/j.1432-0436.2004.07209004.x
  26. Plikus, M. V., Mayer, J. A., de la Cruz, D., Baker, R. E., Maini, P. K., Maxson, R. and Chuong, C. M. (2008) Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration. Nature 451, 340-344. https://doi.org/10.1038/nature06457
  27. Price, F. D., von Maltzahn, J., Bentzinger, C. F., Dumont, N. A., Yin, H., Chang, N. C., Wilson, D. H., Frenette, J. and Rudnicki, M. A. (2014) Inhibition of JAK-STAT signaling stimulates adult satellite cell function. Nat. Med. 20, 1174-1181. https://doi.org/10.1038/nm.3655
  28. Reddy, S., Andl, T., Bagasra, A., Lu, M. M., Epstein, D. J., Morrisey, E. E. and Millar, S. E. (2001) Characterization of Wnt gene expression in developing and postnatal hair follicles and identification of Wnt5a as a target of Sonic hedgehog in hair follicle morphogenesis. Mech. Dev. 107, 69-82. https://doi.org/10.1016/S0925-4773(01)00452-X
  29. Sano, S., Kira, M., Takagi, S., Yoshikawa, K., Takeda, J. and Itami, S. (2000) Two distinct signaling pathways in hair cycle induction: Stat3-dependent and -independent pathways. Proc. Natl. Acad. Sci. U.S.A. 97, 13824-13829. https://doi.org/10.1073/pnas.240303097
  30. Shen, J., Zhang, H., Lin, H., Su, H., Xing, D. and Du, L. (2007) Brazilein protects the brain against focal cerebral ischemia reperfusion injury correlating to inflammatory response suppression. Eur. J. Pharmacol. 558, 88-95. https://doi.org/10.1016/j.ejphar.2006.11.059
  31. Soma, T., Fujiwara, S., Shirakata, Y., Hashimoto, K. and Kishimoto, J. (2012) Hair-inducing ability of human dermal papilla cells cultured under Wnt/$\beta$-catenin signalling activation. Exp. Dermatol. 21, 307-309. https://doi.org/10.1111/j.1600-0625.2012.01458.x
  32. Stenn, K. S. and Paus, R. (2001) Controls of hair follicle cycling. Physiol. Rev. 81, 449-494. https://doi.org/10.1152/physrev.2001.81.1.449
  33. Tsai, S. Y., Sennett, R., Rezza, A., Clavel, C., Grisanti, L., Zemla, R., Najam, S. and Rendl, M. (2014) Wnt/$\beta$-catenin signaling in dermal condensates is required for hair follicle formation. Dev. Biol. 385, 179-188. https://doi.org/10.1016/j.ydbio.2013.11.023
  34. Wang, Z., Li, G., Tse, W. and Bunting, K. D. (2009) Conditional deletion of STAT5 in adult mouse hematopoietic stem cells causes loss of quiescence and permits efficient nonablative stem cell replacement. Blood 113, 4856-4865. https://doi.org/10.1182/blood-2008-09-181107
  35. Xing, L., Dai, Z., Jabbari, A., Cerise, J. E., Higgins, C. A., Gong, W., de Jong, A., Harel, S., DeStefano, G. M., Rothman, L., Singh, P., Petukhova, L., Mackay-Wiggan, J., Christiano, A. M. and Clynes, R. (2014) Alopecia areata is driven by cytotoxic T lymphocytes and is reversed by JAK inhibition. Nat. Med. 20, 1043-1049. https://doi.org/10.1038/nm.3645
  36. Yang, F., Zhou, W. L., Liu, A. L., Qin, H. L., Lee, S. M., Wang, Y. T. and Du, G. H. (2012) The protective effect of 3-deoxysappanchalcone on in vitro influenza virus-induced apoptosis and inflammation. Planta Med. 78, 968-973. https://doi.org/10.1055/s-0031-1298620
  37. Yodsaoue, O., Cheenpracha, S., Karalai, C., Ponglimanont, C. and Tewtrakul, S. (2009) Anti-allergic activity of principles from the roots and heartwood of Caesalpinia sappan on antigen-induced $\beta$-hexosaminidase release. Phytother. Res. 23, 1028-1031. https://doi.org/10.1002/ptr.2670
  38. Youn, U. J., Nam, K. W., Kim, H. S., Choi, G., Jeong, W. S., Lee, M. Y. and Chae, S. (2011) 3-Deoxysappanchalcone inhibits tumor necrosis factor-$\alpha$-induced matrix metalloproteinase-9 expression in human keratinocytes through activated protein-1 inhibition and nuclear factor-kappa B DNA binding activity. Biol. Pharm. Bull. 34, 890-893. https://doi.org/10.1248/bpb.34.890
  39. Yu, B. D., Mukhopadhyay, A. and Wong, C. (2008) Skin and hair: models for exploring organ regeneration. Hum. Mol. Genet. 17, R54-R59. https://doi.org/10.1093/hmg/ddn086
  40. Zeidler, C., von Kockritz, A., Luger, T. A., Stander, S., Husstedt, I. W. and Tsianakas, A. (2016) Tofacitinib, a novel JAK3 inhibitor, as a potential cause of distal symmetric polyneuropathy. J. Eur. Acad. Dermatol. Venereol. 30, 1066-1067. https://doi.org/10.1111/jdv.13114

Cited by

  1. Cytotoxic activities of Telectadium dongnaiense and its constituents by inhibition of the Wnt/β-catenin signaling pathway vol.34, 2017, https://doi.org/10.1016/j.phymed.2017.08.008
  2. Rice bran mineral extract increases the expression of anagen-related molecules in human dermal papilla through wnt/catenin pathway vol.61, pp.1, 2017, https://doi.org/10.1080/16546628.2017.1412792
  3. Activation of Wnt/β-catenin signaling is involved in hair growth-promoting effect of 655-nm red light and LED in in vitro culture model vol.33, pp.3, 2018, https://doi.org/10.1007/s10103-018-2455-3
  4. screening model for hair growth vol.40, pp.5, 2018, https://doi.org/10.1111/ics.12489
  5. Bioactive Molecules for Skin Repair and Regeneration: Progress and Perspectives vol.2019, pp.None, 2016, https://doi.org/10.1155/2019/6789823
  6. Hair Growth Promotion by Extracts of Inula Helenium and Caesalpinia Sappan Bark in Patients with Androgenetic Alopecia: A Pre-clinical Study Using Phototrichogram Analysis vol.6, pp.4, 2016, https://doi.org/10.3390/cosmetics6040066
  7. Boehmite enhances hair follicle growth via stimulation of dermal papilla cells by upregulating β‐catenin signalling vol.29, pp.3, 2016, https://doi.org/10.1111/exd.14051
  8. Broussonetia papyrifera Promotes Hair Growth Through the Regulation of β-Catenin and STAT6 Target Proteins: A Phototrichogram Analysis of Clinical Samples vol.7, pp.2, 2016, https://doi.org/10.3390/cosmetics7020040
  9. Hair Growth Activity of Three Plants of the Polynesian Cosmetopoeia and Their Regulatory Effect on Dermal Papilla Cells vol.25, pp.19, 2016, https://doi.org/10.3390/molecules25194360
  10. Systematic Elucidation of the Mechanism of Sappan Lignum in the Treatment of Diabetic Peripheral Neuropathy Based on Network Pharmacology vol.2021, pp.None, 2016, https://doi.org/10.1155/2021/5528018
  11. The 3-deoxysappanchalcone induces ROS-mediated apoptosis and cell cycle arrest via JNK/p38 MAPKs signaling pathway in human esophageal cancer cells vol.86, pp.None, 2016, https://doi.org/10.1016/j.phymed.2021.153564
  12. Modulation of Hair Growth Promoting Effect by Natural Products vol.13, pp.12, 2016, https://doi.org/10.3390/pharmaceutics13122163