DOI QR코드

DOI QR Code

A Study on the Application with Limestone Sludge at Limestone-Gypsum Wet Flue Gas Desulfurization Process

석회석 슬러지의 석회석-석고 습식 배연탈황 공정적용에 관한 연구

  • Seo, Sung Kwan (Energy & Environmental Division, Korea Institute of Ceramic Eng. & Tech.) ;
  • Chu, Yong Sik (Energy & Environmental Division, Korea Institute of Ceramic Eng. & Tech.) ;
  • Shim, Kwang Bo (Division of Materials Science and Engineering, Hanyang University)
  • 서성관 (한국세라믹기술원 에너지환경소재본부) ;
  • 추용식 (한국세라믹기술원 에너지환경소재본부) ;
  • 심광보 (한양대학교 신소재공학과)
  • Received : 2016.08.01
  • Accepted : 2016.09.29
  • Published : 2016.10.31

Abstract

Flue gas desulfurization(FGD) is an effective technique to remove $SO_2$ gases of coal-fired plants. Limestone is usually used as desulfurizing agent. In this study, we use the limestone sludge which is a by-product of steel industry in order to replace desulfurizing agent of FGD process. Physical and chemical characteristics analysis of desulfurizing agent was conducted. Desulfurizing agent using limestone sludge was fabricated by pre-treatment process and, then the agent was used on FGD process. Consequently, the tendency on the $SO_2$ concentration did not appear. And limestone sludge was considered as possible alternative agent for flue gas desulfurization process through absorber control system.

배연탈황기술은 화력발전소에 발생하는 $SO_2$ 가스를 제거하기 위한 효과적인 방법이며, 흡수제로 석회석을 사용하고 있다. 본 연구에서는 천연자원인 석회석의 사용량을 저감하고 산업 폐기물의 재활용을 위해, 제철소에서 발생하는 석회석 슬러지를 흡수제로 사용하고자 하였다. 흡수제 원료의 물리 화학적 특성분석을 실시하였으며, 전처리 설비를 구축하여 석회석 슬러지를 사용한 흡수제를 제조한 후 배연탈황 공정에 적용하였다. 제조 흡수제 적용 결과, $SO_2$ 농도 변화상에서의 경향성은 나타나지 않았으며, 흡수탑에서의 운전 제어를 통해 석회석 슬러지를 흡수제로 사용 가능할 것으로 사료되었다.

Keywords

References

  1. Frank, N. W., Miller, G. A., and Reed, D. A., 1987 : Operating and Testing a Combined $SO_2$ and NOx Removal Facility, Environmental Progress, 6, pp. 177-182. https://doi.org/10.1002/ep.670060329
  2. An H. S., Park S. S., Kim K. H., and Kim Y. H., 2007 : A study on Optimization of Spray Type Flue Gas Desulfurization (FGD) System, J. Korean Ind. Eng. Chem., 18, pp. 29-35
  3. Won J. H., 1998 : Investigation of Limestone and Modeling of Semi-dry Absorption Tower for Flue Gas Desulfurization, Pohang Univerty of Science and Technology, Thesis (Master).
  4. Meserole, F. B., Glover, R L., and Stewart, D. A., 1982 : Studies of the Major Factors Affecting Magnesium Limestone Dissolution, ACS sympo. Ser., 188, pp. 99-111.
  5. Choi W. K., Jo H. D., Kim I. W., and Lee H. K., 2002 : Effects of Physicochemical Properties of Domestic Limestone on the Dissolution Rates in Flue Gas Desulfurization Process, Hwahak Konghak, 40, pp. 404-409.
  6. Karri S., Anna F., Jarkko V. N., Hilkka T., Topi R., Panu K., Mika V., Kimmo t., Liisa P., Ville N., Jorma K., Anna H., and Risto H., 2014 : Chemical Composition and Size of Particles in Emissions of a Coal-fired Power Plant with Flue Gas Desulfurization, J. Aerosol Science, 73, pp. 14-26. https://doi.org/10.1016/j.jaerosci.2014.03.004
  7. Charlotte B., and Hans T. K., 1997 : A Model for Prediction of Limestone Dissolution in Wet Flue Gas Desulfurization Applications, Ind. Eng. Chem, 36, pp. 3889-3897. https://doi.org/10.1021/ie970030j
  8. Jarl A., Torbjorn E., Stefan F., and Maija V., 1995 : Measuring the reactivity of limestone for wet flue-gas desulfurization, Chem. Eng. Sci., 50, pp. 1081-1089. https://doi.org/10.1016/0009-2509(94)00482-7
  9. Ukawa N., Takashina T., Shinoda N., and Shimizu T., 1993 : Effects of particle size distribution on limestone dissolution in wet FGD process applications, Environment Prog., 12, pp. 238-242. https://doi.org/10.1002/ep.670120314
  10. Chan. P. K., and Rochelle, G. T., 1982 : Limestone Dissolution: Effects of pH, $CO_2$, and Buffers Models by Mass Transfer, ACS Symposium Ser., 188, pp. 75-79.

Cited by

  1. 중화약품과 마이크로버블 장치를 이용한 폐수처리장 바이오가스 처리 vol.23, pp.1, 2016, https://doi.org/10.17663/jwr.2021.23.1.54