DOI QRμ½”λ“œ

DOI QR Code

ON πœƒ-MODIFICATIONS OF GENERALIZED TOPOLOGIES VIA HEREDITARY CLASSES

  • Received : 2016.01.02
  • Published : 2016.10.31

Abstract

Let (X, ${\mu}$) be a generalized topological space (GTS) and $\mathcal{H}$ be a hereditary class on X due to $Cs{\acute{a}}sz{\acute{a}}r$ [8]. In this paper, we define an operator $()^{\circ}:\mathcal{P}(X){\rightarrow}\mathcal{P}(X)$. By setting $c^{\circ}(A)=A{\cup}A^{\circ}$ for every subset A of X, we define the family ${\mu}^{\circ}=\{M{\subseteq}X:X-M=c^{\circ}(X-M)\}$ and show that ${\mu}^{\circ}$ is a GT on X such that ${\mu}({\theta}){\subseteq}{\mu}^{\circ}{\subseteq}{\mu}^*$, where ${\mu}^*$ is a GT in [8]. Moreover, we define and investigate ${\mu}^{\circ}$-codense and strongly ${\mu}^{\circ}$-codense hereditary classes.

Keywords

References

  1. A. Al-Omari and T. Noiri, Local closure functions in ideal topological spaces, Novi Sad J. Math. 43 (2013), no. 2, 139-149.
  2. A. Al-Omari and T. Noiri, Weak and strong forms of sT-continuous functions, Commun. Korean Math. Soc. 30 (2015), no. 4, 493-504. https://doi.org/10.4134/CKMS.2015.30.4.493
  3. A, Csaszar, Generalized open sets, Acta Math. Hungar. 75 (1997), no. 1-2, 65-87. https://doi.org/10.1023/A:1006582718102
  4. A, Csaszar, Generalized topology, generalized continuity, Acta Math. Hungar. 96 (2002), no. 4, 351-357. https://doi.org/10.1023/A:1019713018007
  5. A, Csaszar, Generalized open sets in generalized topologies, Acta Math. Hungar. 106 (2005), no. 1-2, 53-66. https://doi.org/10.1007/s10474-005-0005-5
  6. A, Csaszar, Modification of generalized topologies via hereditary classes, Acta Math. Hungar. 115 (2007), no. 1-2, 29-36. https://doi.org/10.1007/s10474-006-0531-9
  7. A, Csaszar, Remark on quasi-topologies, Acta Math. Hungar. 119 (2008), no. 1-2, 197-200. https://doi.org/10.1007/s10474-007-7023-4
  8. A, Csaszar, ${\delta}$-, and ${\theta}$-modifications of generalized topologies, Acta Math. Hungar. 120 (2008), no. 3, 275-279. https://doi.org/10.1007/s10474-007-7136-9
  9. D. Jankovic and T. R. Hamlett, New topologies from old via ideals, Amer.Math. Monthly 97 (1990), no. 4, 295-310. https://doi.org/10.2307/2324512
  10. W. K. Min, A note on ${\theta}$(g, g')-continuity in generalized topologies, Acta Math. Hungar. 125 (2009), no. 4, 387-393. https://doi.org/10.1007/s10474-009-9075-0